Abstract
Cell extracts of Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, and Mycoplasma gallisepticum S6 were examined for 37 cytoplasmic enzyme activities involved in the salvage and biosynthesis of purines. All of these organisms had adenine phosphoribosyltransferase activity (EC 2.4.2.7) and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8). All of these organisms had purine-nucleoside phosphorylase activity (EC 2.4.2.1) in the synthetic direction using ribose-1-phosphate (R-1-P) or deoxyribose-1-phosphate (dR-1-P); this activity generated ribonucleosides or deoxyribonucleosides, respectively. The pyrimidine nucleobase uracil could also be ribosylated by using either R-1-P or dR-1-P as a donor. The synthesis of deoxyribonucleosides from nucleobases and dR-1-P has been reported from only one other procaryote, Escherichia coli (L. A. Mason and J. O. Lampen, J. Biol. Chem. 193:539-547, 1951). The reverse of this phosphorylase reaction is more widely known, and we found such activity in all mollicutes studied. Some Acholeplasma species but not the Mycoplasma species can phosphorylate deoxyribonucleosides to deoxyribomononucleotides by a PPi-dependent deoxyribonucleoside kinase activity, which was first reported in this group for the ribose analogs (V. V. Tryon and J. D. Pollack, Int. J. Syst. Bacteriol. 35:497-501, 1985). This is the first report of PPi-dependent purine deoxyribonucleoside kinase activity. An ATP-dependent purine deoxyribonucleoside kinase activity is known only in salmon milt extracts (H. L. A. Tarr, Can. J. Biochem. 42:1535-1545, 1964). Deoxyribomononucleotidase activity was also found in cytoplasmic extracts of these mollicutes. This is the first report of deoxyribomononucleotidase activity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal R. P., Parks R. E., Jr Purine nucleoside phosphorylase from human erythrocytes. IV. Crystallization and some properties. J Biol Chem. 1969 Feb 25;244(4):644–647. [PubMed] [Google Scholar]
- Bonissol C., Traincard F., Stoïljkovic B., Hosli P. Adenosine phosphorylase activity as a technique for detection of mycoplasmas in biological media. Ann Microbiol (Paris) 1984 Jan-Feb;135A(1):63–72. doi: 10.1016/s0769-2609(84)80060-5. [DOI] [PubMed] [Google Scholar]
- Chang C. J., Chen T. A. Spiroplasmas: cultivation in chemically defined medium. Science. 1982 Feb 26;215(4536):1121–1122. doi: 10.1126/science.7063844. [DOI] [PubMed] [Google Scholar]
- Davis J. W., Nelson P., Ranglin R. Enzyme activities contributing to hypoxanthine production in Ureaplasma. Isr J Med Sci. 1984 Oct;20(10):946–949. [PubMed] [Google Scholar]
- FRIEDKIN M., KALCKAR H. M. Desoxyribose-1-phosphate: I. The phosphorolysis and resynthesis of purine desoxyribose nucleoside. J Biol Chem. 1950 Jun;184(2):437–448. [PubMed] [Google Scholar]
- Gardner R., Kornberg A. Biochemical studies of bacterial sporulation and germination. V. Purine nucleoside phosphorylase of vegetative cells and spores of Bacillus cereus. J Biol Chem. 1967 May 25;242(10):2383–2388. [PubMed] [Google Scholar]
- Garrett C., Santi D. V. A rapid and sensitive high pressure liquid chromatography assay for deoxyribonucleoside triphosphates in cell extracts. Anal Biochem. 1979 Nov 1;99(2):268–273. doi: 10.1016/s0003-2697(79)80005-6. [DOI] [PubMed] [Google Scholar]
- Greene S. V., Smith J. M. High-performance liquid chromatographic detection of XMP as a basis for an improved IMP dehydrogenase assay. J Chromatogr. 1985 Sep 13;343(1):160–167. doi: 10.1016/s0378-4347(00)84580-6. [DOI] [PubMed] [Google Scholar]
- HEPPEL L. A., HILMOE R. J. [Phosphorolysis and hydrolysis of purine ribosides by enzymes from yeast]. J Biol Chem. 1952 Oct;198(2):683–694. [PubMed] [Google Scholar]
- HOFFMANN C. E., LAMPEN J. O. Products of desoxyribose degradation by Escherichia coli. J Biol Chem. 1952 Oct;198(2):885–893. [PubMed] [Google Scholar]
- Hamet M., Bonissol C., Cartier P. Enzymatic activities on purine pyrimidine metabolism in nine mycoplasma species contaminating cell cultures. Clin Chim Acta. 1980 Apr 11;103(1):15–22. doi: 10.1016/0009-8981(80)90225-9. [DOI] [PubMed] [Google Scholar]
- Hatanaka M., Del Giudice R., Long C. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1401–1405. doi: 10.1073/pnas.72.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liska B., Smith P. F. Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors. Folia Microbiol (Praha) 1974;19(2):107–117. doi: 10.1007/BF02872843. [DOI] [PubMed] [Google Scholar]
- MANSON L. A., LAMPEN J. O. The metabolism of desoxyribose nucleosides in Escherichia coli. J Biol Chem. 1951 Dec;193(2):539–547. [PubMed] [Google Scholar]
- MANSON L. A., LAMPEN J. O. The metabolism of hypoxanthine desoxyriboside in animal tissues. J Biol Chem. 1951 Jul;191(1):95–104. [PubMed] [Google Scholar]
- McGarrity G. J., Carson D. A. Adenosine phosphorylase-mediated nucleoside toxicity. Application towards the detection of mycoplasmal infection in mammalian cell cultures. Exp Cell Res. 1982 May;139(1):199–205. doi: 10.1016/0014-4827(82)90333-0. [DOI] [PubMed] [Google Scholar]
- McIvor R. S., Kenny G. E. Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species. J Bacteriol. 1978 Aug;135(2):483–489. doi: 10.1128/jb.135.2.483-489.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIvor R. S., Wohlhueter R. M., Plagemann P. G. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties. J Bacteriol. 1983 Oct;156(1):198–204. doi: 10.1128/jb.156.1.198-204.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell A., Finch L. R. Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J Bacteriol. 1977 Jun;130(3):1047–1054. doi: 10.1128/jb.130.3.1047-1054.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell A., Sin I. L., Finch L. R. Enzymes of purine metabolism in Mycoplasma mycoides subsp. mycoides. J Bacteriol. 1978 Jun;134(3):706–712. doi: 10.1128/jb.134.3.706-712.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neale G. A., Mitchell A., Finch L. R. Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J Bacteriol. 1983 Apr;154(1):17–22. doi: 10.1128/jb.154.1.17-22.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollack J. D., Hoffmann P. J. Properties of the nucleases of mollicutes. J Bacteriol. 1982 Oct;152(1):538–541. doi: 10.1128/jb.152.1.538-541.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAZIN S., COHEN A. Nutritional requirements and metabolism of Mycoplasma laidlawii. J Gen Microbiol. 1963 Jan;30:141–154. doi: 10.1099/00221287-30-1-141. [DOI] [PubMed] [Google Scholar]
- RAZIN S. Nucleic acid precursor requirements of Mycoplasma laidlawii. J Gen Microbiol. 1962 Jun;28:243–250. doi: 10.1099/00221287-28-2-243. [DOI] [PubMed] [Google Scholar]
- ROBINS E., SMITH D. E., McCAMAN R. E. Microdetermination of purine nucleoside phosphorylase activity in brain and its distribution within the monkey cerebellum. J Biol Chem. 1953 Oct;204(2):927–937. [PubMed] [Google Scholar]
- Reichard P., Ehrenberg A. Ribonucleotide reductase--a radical enzyme. Science. 1983 Aug 5;221(4610):514–519. doi: 10.1126/science.6306767. [DOI] [PubMed] [Google Scholar]
- Robertson B. C., Hoffee P. A. Purification and properties of purine nucleoside phosphorylase from Salmonella typhimurium. J Biol Chem. 1973 Mar 25;248(6):2040–2043. [PubMed] [Google Scholar]
- Rodwell A. W. The nutrition and metabolism of mycoplasma: Progress and problems. Ann N Y Acad Sci. 1967 Jul 28;143(1):88–109. doi: 10.1111/j.1749-6632.1967.tb27649.x. [DOI] [PubMed] [Google Scholar]
- Smith D. W., Hanawalt P. C. Macromolecular synthesis and thymineless death in Mycoplasma laidlawii B. J Bacteriol. 1968 Dec;96(6):2066–2076. doi: 10.1128/jb.96.6.2066-2076.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TARR H. L. FORMATION OF PURINE AND PYRIMIDINE NUCLEOSIDES, DEOXYNUCLEOSIDES, AND THE CORRESPONDING MONONUCLEOTIDES BY SALMON MILT EXTRACT NUCLEOSIDE PHOSPHORYLASE AND NUCLEOSIDE KINASE ENZYMES. Can J Biochem. 1964 Nov;42:1535–1545. doi: 10.1139/o64-164. [DOI] [PubMed] [Google Scholar]
- TARR H. L. Lingcod muscle purine nucleoside phosphorylase. Can J Biochem Physiol. 1958 Jun;36(6):517–530. [PubMed] [Google Scholar]
- TOURTELLOTTE M. E., MOROWITZ H. J., KASIMER P. DEFINED MEDIUM FOR MYCOPLASMA LAIDLAWII. J Bacteriol. 1964 Jul;88:11–15. doi: 10.1128/jb.88.1.11-15.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarr H. L., Roy J. E. Fish-muscle purine and pyrimidine nucleoside phosphorylases. Can J Biochem. 1967 Mar;45(3):409–419. doi: 10.1139/o67-048. [DOI] [PubMed] [Google Scholar]
- Thelander L., Reichard P. Reduction of ribonucleotides. Annu Rev Biochem. 1979;48:133–158. doi: 10.1146/annurev.bi.48.070179.001025. [DOI] [PubMed] [Google Scholar]
- Tryon V. V., Pollack D. Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity. J Bacteriol. 1984 Jul;159(1):265–270. doi: 10.1128/jb.159.1.265-270.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAMADA E. W. The phosphorolysis of nucleosides by rabbit bone marrow. J Biol Chem. 1961 Nov;236:3043–3046. [PubMed] [Google Scholar]
- Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2306–2309. doi: 10.1073/pnas.82.8.2306. [DOI] [PMC free article] [PubMed] [Google Scholar]