Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Jul;167(1):356–361. doi: 10.1128/jb.167.1.356-361.1986

Myxococcus xanthus autocide AMI.

M Varon, A Tietz, E Rosenberg
PMCID: PMC212883  PMID: 3087961

Abstract

Autocide AMI of Myxococcus xanthus was purified and shown to be a mixture of fatty acids: 46.4% saturated, 49.3% monounsaturated, and 4.3% diunsaturated. The specific autocidal activities (units per milligram) were as follows: purified AMI, 1,000; saturated fraction, 100; monounsaturated fraction, 800; diunsaturated fraction, 2,200. Model fatty acids mimicked to some extent the activity of AMI, although none of the fatty acids tested were as active as purified AMI. Spontaneous and induced mutants of M. xanthus were selected for resistance to AMI and to fatty acids. The AMI-resistant mutants were also resistant to the model fatty acids, whereas resistance to fatty acids was specific to the compound used for mutant selection. All AMI- and fatty acid-resistant mutants examined were found to be blocked in fruiting body formation. Some of these mutants were able to form normal fruiting bodies when mixed with the extracellular fluid of the parental strain. The data suggest that AMI plays a role in developmental lysis of M. xanthus.

Full text

PDF
356

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carson D. D., Daneo-Moore L. Effects of fatty acids on lysis of Streptococcus faecalis. J Bacteriol. 1980 Mar;141(3):1122–1126. doi: 10.1128/jb.141.3.1122-1126.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fay J. P., Farías R. N. Inhibitory action of a non-metabolizable fatty acid on the growth of Escherichia coli: role of metabolism and outer membrane integrity. J Bacteriol. 1977 Dec;132(3):790–795. doi: 10.1128/jb.132.3.790-795.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kupfer D., Zusman D. R. Changes in cell surface hydrophobicity of Myxococcus xanthus are correlated with sporulation-related events in the developmental program. J Bacteriol. 1984 Aug;159(2):776–779. doi: 10.1128/jb.159.2.776-779.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Norén B., Odham G. Antagonistic effects of Myxococcus xanthus on fungi. II. Isolation and characterization of inhibitory lipid factors. Lipids. 1973 Oct;8(10):573–583. doi: 10.1007/BF02532714. [DOI] [PubMed] [Google Scholar]
  5. Shimkets L. J., Kaiser D. Murein components rescue developmental sporulation of Myxococcus xanthus. J Bacteriol. 1982 Oct;152(1):462–470. doi: 10.1128/jb.152.1.462-470.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Smith S. W. A new salting-out technique for colorimetric free fatty acid assays. Anal Biochem. 1975 Aug;67(2):531–539. doi: 10.1016/0003-2697(75)90329-2. [DOI] [PubMed] [Google Scholar]
  7. Tsuchido T., Hiraoka T., Takano M., Shibasaki I. Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids. J Bacteriol. 1985 Apr;162(1):42–46. doi: 10.1128/jb.162.1.42-46.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Varon M., Cohen S., Rosenberg E. Autocides produced by Myxococcus xanthus. J Bacteriol. 1984 Dec;160(3):1146–1150. doi: 10.1128/jb.160.3.1146-1150.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walstad D. L., Reitz R. C., Sparling P. F. Growth inhibition among strains of Neisseria gonorrhoeae due to production of inhibitory free fatty acids and lysophosphatidylethanolamine: absence of bacteriocins. Infect Immun. 1974 Sep;10(3):481–488. doi: 10.1128/iai.10.3.481-488.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ware J. C., Dworkin M. Fatty acids of Myxococcus xanthus. J Bacteriol. 1973 Jul;115(1):253–261. doi: 10.1128/jb.115.1.253-261.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. White D., Dworkin M., Tipper D. J. Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J Bacteriol. 1968 Jun;95(6):2186–2197. doi: 10.1128/jb.95.6.2186-2197.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wireman J. W., Dworkin M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol. 1977 Feb;129(2):798–802. doi: 10.1128/jb.129.2.798-802.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wireman J. W., Dworkin M. Morphogenesis and developmental interactions in myxobacteria. Science. 1975 Aug 15;189(4202):516–523. doi: 10.1126/science.806967. [DOI] [PubMed] [Google Scholar]
  14. Zusman D. R. "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol. 1982 Jun;150(3):1430–1437. doi: 10.1128/jb.150.3.1430-1437.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES