Abstract
To construct a host-vector system in an n-alkane-assimilating yeast, Candida maltosa, the isolation of an ARS site from its genome which replicates autonomously in C. maltosa was attempted. Leu- mutants of C. maltosa were transformed with a gene library prepared by using YEp13 (LEU2+) as a vector, and Leu+ transformants were obtained at a high frequency. A plasmid named pCS1 was isolated from the recipient cells. pCS1 contained a 6.3-kilobase (kb) fragment of the C. maltosa genome, and a 3.8-kb fragment with ARS activity was subcloned and designated the TRA (transformation ability) region. Vectors (pTRA1 and pTRA11) for C. maltosa J288 were constructed that contained this 3.8-kb fragment, pBR322, and the LEU2 gene of Saccharomyces cerevisiae. Transformation of C. maltosa J288 with these plasmids was successful by both spheroplast and lithium acetate methods. Southern blot analysis suggested that the copy number of pTRA1 in C. maltosa was between 10 and 20, and it was stably maintained during growth without selective pressure in the medium. It was also found that these vectors could transform S. cerevisiae leu2- to LEU2+, suggesting that the TRA region contained an ARS site(s) that was specific not only for C. maltosa but also for S. cerevisiae.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
- Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
- Cregg J. M., Barringer K. J., Hessler A. Y., Madden K. R. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985 Dec;5(12):3376–3385. doi: 10.1128/mcb.5.12.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo M., Bertrand J. C., Roche B., Azoulay E. Alkane oxidation in Candida tropicalis. Biochim Biophys Acta. 1973 Mar 8;296(3):624–638. doi: 10.1016/0005-2760(73)90123-9. [DOI] [PubMed] [Google Scholar]
- Gunge N. Yeast DNA plasmids. Annu Rev Microbiol. 1983;37:253–276. doi: 10.1146/annurev.mi.37.100183.001345. [DOI] [PubMed] [Google Scholar]
- Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu W. H., Magee P. T., Magee B. B., Reddy C. A. Construction of a new yeast cloning vector containing autonomous replication sequences from Candida utilis. J Bacteriol. 1983 Jun;154(3):1033–1039. doi: 10.1128/jb.154.3.1033-1039.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamura M., Takagi M., Yano K. Cloning of a LEU gene and an ARS site of Candida maltosa. Gene. 1983 Oct;24(2-3):157–162. doi: 10.1016/0378-1119(83)90075-6. [DOI] [PubMed] [Google Scholar]
- Kunze G., Petzoldt C., Bode R., Samsonova I., Hecker M., Birnbaum D. Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet. 1985;9(3):205–209. doi: 10.1007/BF00420313. [DOI] [PubMed] [Google Scholar]
- Lebeault J. M., Lode E. T., Coon M. J. Fatty acid and hydrocarbon hydroxylation in yeast: role of cytochrome P-450 in Candida tropicalis. Biochem Biophys Res Commun. 1971 Feb 5;42(3):413–419. doi: 10.1016/0006-291x(71)90386-x. [DOI] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Stinchcomb D. T., Thomas M., Kelly J., Selker E., Davis R. W. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4559–4563. doi: 10.1073/pnas.77.8.4559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunairi M., Watabe K., Takagi M., Yano K. Increase of translatable mRNA for major microsomal proteins in n-alkane-grown Candida maltosa. J Bacteriol. 1984 Dec;160(3):1037–1040. doi: 10.1128/jb.160.3.1037-1040.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takagi M., Moriya K., Yano K. Induction of cytochrome P450 in petroleum-assimilating yeast--I. selection of a strain and basic characterization of cytochrome P450 induction in the strain. Cell Mol Biol Incl Cyto Enzymol. 1979;25(5):363–369. [PubMed] [Google Scholar]
- Takagi M., Moriya K., Yano K. Induction of cytochrome P450 in petroleum-assimilating yeast-II. Comparison of protein synthesizing activity in the cells grown on glucose and n-tetradecane. Cell Mol Biol Incl Cyto Enzymol. 1979;25(6):371–375. [PubMed] [Google Scholar]