Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Aug;167(2):729–731. doi: 10.1128/jb.167.2.729-731.1986

Iron respiration-driven proton translocation in aerobic bacteria.

K A Short, R P Blakemore
PMCID: PMC212953  PMID: 3015890

Abstract

Washed cell suspensions of Aquaspirillum magnetotacticum MS-1, A. itersonii E12639, Bacillus subtilis 6633, and Escherichia coli CSH27 translocated protons in response to the added oxidant O2 or NO3-, with triphenylmethylphosphonium bromide as the permeant ion. Iron respiration-driven proton translocation was observed in A. magnetotacticum MS-1, B. subtilis, and E. coli but not in a nonmagnetic strain of A. magnetotacticum (strain NM-1A) or with A. itersonii. Proton translocation to Fe3+ was totally inhibited by 500 microM NaN3 or 0.5 microM carbonyl cyanide m-chlorophenylhydrazone.

Full text

PDF
731

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisschop A., Boonstra J., Sips H. J., Konings W. N. Respiratory chain linked ferricy anide reduction drives active transport in membrane vesicles from Bacillus subtilis. FEBS Lett. 1975 Dec 1;60(1):11–15. doi: 10.1016/0014-5793(75)80407-8. [DOI] [PubMed] [Google Scholar]
  2. Blakemore R. P., Maratea D., Wolfe R. S. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol. 1979 Nov;140(2):720–729. doi: 10.1128/jb.140.2.720-729.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boonstra J., Sips H. J., Konings W. N. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Eur J Biochem. 1976 Oct 1;69(1):35–44. doi: 10.1111/j.1432-1033.1976.tb10855.x. [DOI] [PubMed] [Google Scholar]
  4. Castignetti D., Hollocher T. C. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp. Antonie Van Leeuwenhoek. 1983 Apr;49(1):61–68. doi: 10.1007/BF00457880. [DOI] [PubMed] [Google Scholar]
  5. Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dailey H. A., Jr, Lascelles J. Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms. J Bacteriol. 1977 Feb;129(2):815–820. doi: 10.1128/jb.129.2.815-820.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kristjansson J. K., Hollocher T. C. Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane. J Bacteriol. 1979 Mar;137(3):1227–1233. doi: 10.1128/jb.137.3.1227-1233.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kristjansson J. K., Walter B., Hollocher T. C. Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria. Biochemistry. 1978 Nov 14;17(23):5014–5019. doi: 10.1021/bi00616a024. [DOI] [PubMed] [Google Scholar]
  9. Lascelles J., Burke K. A. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system. J Bacteriol. 1978 May;134(2):585–589. doi: 10.1128/jb.134.2.585-589.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scholes P., Mitchell P. Respiration-driven proton translocation in Micrococcus denitrificans. J Bioenerg. 1971 Sep;1(3):309–323. doi: 10.1007/BF01516290. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES