Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Oct;168(1):334–340. doi: 10.1128/jb.168.1.334-340.1986

Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp.

S Clejan, T A Krulwich, K R Mondrus, D Seto-Young
PMCID: PMC213456  PMID: 3093462

Abstract

The membrane lipids from two obligately and two facultatively alkalophilic strains of Bacillus spp. were characterized in a comparative study that included B. subtilis. Preparations of membrane lipids were made from pH 10.5-grown cells of all of the alkalophiles and from pH 7.5- or 7.0-grown cells of the two facultative strains and B. subtilis. The two obligate alkalophiles contained high ratios of membrane lipid to membrane protein, and the lipid fraction contained a high proportion of neutral lipid. These characteristics are probably not prerequisites for growth at very high pH since one or another of the facultative strains failed to show these properties at high pH. All of the alkalophiles contained appreciable amounts of squalene and C40 isoprenoids. Among the polar lipids, the alkalophiles all contained high concentrations of anionic phospholipids, including phosphatidylglycerol and especially large amounts of cardiolipin; phosphatidylethanolamine was the other major phospholipid. Small amounts of bis(monoacylglycero)phosphate were found in most, but not all, of the alkalophile preparations. Glycolipids and phosphoglycolipids were absent. The fatty acid composition of the total phospholipid and individual fractions revealed two features that distinguished between the obligate and facultative strains. Membranes from the obligately alkalophilic species contained a high concentration of branched-chain fatty acids, comparable to that in membranes from B. subtilis, as well as a relatively high content of unsaturated fatty acids. By contrast, the facultatively alkalophilic strains contained almost no unsaturated fatty acids and a lower concentration of branched-chain fatty acids than either the obligate alkalophiles or B. subtilis.

Full text

PDF
338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amdur B. H., Szabo E. I., Socransky S. S. Presence of squalene in gram-positive bacteria. J Bacteriol. 1978 Jul;135(1):161–163. doi: 10.1128/jb.135.1.161-163.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bishop D. G., Rutberg L., Samuelsson B. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem. 1967 Nov;2(4):448–453. doi: 10.1111/j.1432-1033.1967.tb00158.x. [DOI] [PubMed] [Google Scholar]
  5. Bok S. H., Demain A. L. An improved colorimetric assay for polyols. Anal Biochem. 1977 Jul;81(1):18–20. doi: 10.1016/0003-2697(77)90593-0. [DOI] [PubMed] [Google Scholar]
  6. Guffanti A. A., Chiu E., Krulwich T. A. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH. Arch Biochem Biophys. 1985 Jun;239(2):327–333. doi: 10.1016/0003-9861(85)90695-2. [DOI] [PubMed] [Google Scholar]
  7. Guffanti A. A., Finkelthal O., Hicks D. B., Falk L., Sidhu A., Garro A., Krulwich T. A. Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol. 1986 Sep;167(3):766–773. doi: 10.1128/jb.167.3.766-773.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guffanti A. A., Susman P., Blanco R., Krulwich T. A. The protonmotive force and alpha-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J Biol Chem. 1978 Feb 10;253(3):708–715. [PubMed] [Google Scholar]
  9. Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kelly M., Norgård S., Liaaen-Jensen S. Bacterial carotenoids. 31. C50-carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand. 1970;24(6):2169–2182. doi: 10.3891/acta.chem.scand.24-2169. [DOI] [PubMed] [Google Scholar]
  11. Krulwich T. A. Bioenergetics of alkalophilic bacteria. J Membr Biol. 1986;89(2):113–125. doi: 10.1007/BF01869707. [DOI] [PubMed] [Google Scholar]
  12. Kushwaha S. C., Kates M., Sprott G. D., Smith I. C. Novel polar lipids from the methanogen Methanospirillum hungatei GP1. Biochim Biophys Acta. 1981 Apr 23;664(1):156–173. doi: 10.1016/0005-2760(81)90038-2. [DOI] [PubMed] [Google Scholar]
  13. Kushwaha S. C., Pugh E. L., Kramer J. K., Kates M. Isolation and identification of dehydrosqualene and C 40 -carotenoid pigments in Halobacterium cutirubrum. Biochim Biophys Acta. 1972 Mar 23;260(3):492–506. doi: 10.1016/0005-2760(72)90064-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Langworthy T. A. Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta. 1977 Apr 26;487(1):37–50. doi: 10.1016/0005-2760(77)90042-x. [DOI] [PubMed] [Google Scholar]
  16. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  17. Mandel K. G., Guffanti A. A., Krulwich T. A. Monovalent cation/proton antiporters in membrane vesicles from Bacillus alcalophilus. J Biol Chem. 1980 Aug 10;255(15):7391–7396. [PubMed] [Google Scholar]
  18. Miller K. J. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp. J Bacteriol. 1985 Apr;162(1):263–270. doi: 10.1128/jb.162.1.263-270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nishihara M., Morii H., Koga Y. Bis(monoacylglycero)phosphate in alkalophilic bacteria. J Biochem. 1982 Nov;92(5):1469–1479. doi: 10.1093/oxfordjournals.jbchem.a134071. [DOI] [PubMed] [Google Scholar]
  20. RENKONEN O. A note on spectrophotometric determination of acyl ester groups in lipids. Biochim Biophys Acta. 1961 Dec 9;54:361–362. doi: 10.1016/0006-3002(61)90380-8. [DOI] [PubMed] [Google Scholar]
  21. Roughan P. G., Batt R. D. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal Biochem. 1968 Jan;22(1):74–88. doi: 10.1016/0003-2697(68)90261-3. [DOI] [PubMed] [Google Scholar]
  22. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vasilenko I., De Kruijff B., Verkleij A. J. Polymorphic phase behaviour of cardiolipin from bovine heart and from Bacillus subtilis as detected by 31P-NMR and freeze-fracture techniques. Effects of Ca2+, Mg2+, Ba2+ and temperature. Biochim Biophys Acta. 1982 Jan 22;684(2):282–286. doi: 10.1016/0005-2736(82)90018-9. [DOI] [PubMed] [Google Scholar]
  24. de Kruijff B., Cullis P. R. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. Biochim Biophys Acta. 1980 Nov 18;602(3):477–490. doi: 10.1016/0005-2736(80)90327-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES