Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Dec;168(3):1366–1371. doi: 10.1128/jb.168.3.1366-1371.1986

Bacterial alkaline phosphatase clonal variation in some Escherichia coli K-12 phoR mutant strains.

B L Wanner
PMCID: PMC213647  PMID: 3536875

Abstract

Several phoR alleles (phoR19, phoR20, phoR68, phoR69, phoR70, and phoR78) led to either a bacterial alkaline phosphatase (BAP)-constitutive phenotype or a variable behavior, depending upon the strain tested. Whereas Escherichia coli K10, MC1000, and XPh4 phoR mutants were constitutive, AB1157, BD792, MC4100, and W3110 phoR mutants displayed the metastable character. For the latter strains, constitutive mutants regularly segregated BAP-negative clones which yielded constitutive variants again at a high frequency. Indeed, the pattern of variation observed in BAP-variable phoR strains is phenotypically analogous to phase variation of the H1/H2 flagellum antigen type in Salmonella typhimurium and the molecular switch between the immune and sensitive states in bacteriophage lambda. The metastable behavior was not a general property of BAP-constitutive mutants, since several phosphate-specific transport-phoU mutations led to a constitutive (stable) phenotype regardless of the strain tested. But in phoR phosphate-specific transport-phoU mutants, the metastable character was epistatic (dominant), and such double mutants showed clonal variation in BAP-variable strains.

Full text

PDF
1368

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brickman E., Beckwith J. Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol. 1975 Aug 5;96(2):307–316. doi: 10.1016/0022-2836(75)90350-2. [DOI] [PubMed] [Google Scholar]
  2. Case C. C., Bukau B., Granett S., Villarejo M. R., Boos W. Contrasting mechanisms of envZ control of mal and pho regulon genes in Escherichia coli. J Bacteriol. 1986 Jun;166(3):706–712. doi: 10.1128/jb.166.3.706-712.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GAREN A., ECHOLS H. Properties of two regulating genes for alkaline phosphatase. J Bacteriol. 1962 Feb;83:297–300. doi: 10.1128/jb.83.2.297-300.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GAREN A., GAREN S. Genetic evidence on the nature of the repressor for alkaline phosphatase in E. coli. J Mol Biol. 1963 May;6:433–438. doi: 10.1016/s0022-2836(63)80054-6. [DOI] [PubMed] [Google Scholar]
  5. Garrett S., Taylor R. K., Silhavy T. J. Isolation and characterization of chain-terminating nonsense mutations in a porin regulator gene, envZ. J Bacteriol. 1983 Oct;156(1):62–69. doi: 10.1128/jb.156.1.62-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Granett S., Villarejo M. Regulation of gene expression in Escherichia coli by the local anesthetic procaine. J Mol Biol. 1982 Sep 15;160(2):363–367. doi: 10.1016/0022-2836(82)90181-4. [DOI] [PubMed] [Google Scholar]
  7. Lederberg J, Iino T. Phase Variation in Salmonella. Genetics. 1956 Sep;41(5):743–757. doi: 10.1093/genetics/41.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mieschendahl M., Griesser H. W., Müller-Hill B. lambda Immunity phase shift in a lambda N- -lacZ+ fusion. Mol Gen Genet. 1981;183(1):202–204. doi: 10.1007/BF00270164. [DOI] [PubMed] [Google Scholar]
  9. Morris H., Schlesinger M. J., Bracha M., Yagil E. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase. J Bacteriol. 1974 Aug;119(2):583–592. doi: 10.1128/jb.119.2.583-592.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Roberts T. M., Sauer R. T. How the lambda repressor and cro work. Cell. 1980 Jan;19(1):1–11. doi: 10.1016/0092-8674(80)90383-9. [DOI] [PubMed] [Google Scholar]
  11. Simon M., Zieg J., Silverman M., Mandel G., Doolittle R. Phase variation: evolution of a controlling element. Science. 1980 Sep 19;209(4463):1370–1374. doi: 10.1126/science.6251543. [DOI] [PubMed] [Google Scholar]
  12. Spiegelman W. G. Two states of expression of genes cl, rex, and N in lambda. Virology. 1971 Jan;43(1):16–33. doi: 10.1016/0042-6822(71)90220-0. [DOI] [PubMed] [Google Scholar]
  13. Strauch K. L., Kumamoto C. A., Beckwith J. Does secA mediate coupling between secretion and translation in Escherichia coli? J Bacteriol. 1986 May;166(2):505–512. doi: 10.1128/jb.166.2.505-512.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tribhuwan R. C., Pradhan D. S. Induction of alkaline phosphatase in Escherichia coli: effect of procaine hydrochloride. J Bacteriol. 1977 Aug;131(2):431–437. doi: 10.1128/jb.131.2.431-437.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Villarejo M., Davis J. L., Granett S. Osmoregulation of alkaline phosphatase synthesis in Escherichia coli K-12. J Bacteriol. 1983 Nov;156(2):975–978. doi: 10.1128/jb.156.2.975-978.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wanner B. L., Bernstein J. Determining the phoM map location in Escherichia coli K-12 by using a nearby transposon Tn10 insertion. J Bacteriol. 1982 Apr;150(1):429–432. doi: 10.1128/jb.150.1.429-432.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wanner B. L., Latterell P. Mutants affected in alkaline phosphatase, expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics. 1980 Oct;96(2):353–366. doi: 10.1093/genetics/96.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wanner B. L., McSharry R. Phosphate-controlled gene expression in Escherichia coli K12 using Mudl-directed lacZ fusions. J Mol Biol. 1982 Jul 5;158(3):347–363. doi: 10.1016/0022-2836(82)90202-9. [DOI] [PubMed] [Google Scholar]
  19. Wanner B. L. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol. 1986 Sep 5;191(1):39–58. doi: 10.1016/0022-2836(86)90421-3. [DOI] [PubMed] [Google Scholar]
  20. Wanner B. L. Overlapping and separate controls on the phosphate regulon in Escherichia coli K12. J Mol Biol. 1983 May 25;166(3):283–308. doi: 10.1016/s0022-2836(83)80086-2. [DOI] [PubMed] [Google Scholar]
  21. Wanner B. L., Sarthy A., Beckwith J. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins. J Bacteriol. 1979 Oct;140(1):229–239. doi: 10.1128/jb.140.1.229-239.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wanner B. L., Wieder S., McSharry R. Use of bacteriophage transposon Mu d1 to determine the orientation for three proC-linked phosphate-starvation-inducible (psi) genes in Escherichia coli K-12. J Bacteriol. 1981 Apr;146(1):93–101. doi: 10.1128/jb.146.1.93-101.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilkins A. S. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):616–623. doi: 10.1128/jb.110.2.616-623.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Willsky G. R., Malamy M. H. Control of the synthesis of alkaline phosphatase and the phosphate-binding protein in Escherichia coli. J Bacteriol. 1976 Jul;127(1):595–609. doi: 10.1128/jb.127.1.595-609.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES