Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Sep;169(9):3982–3987. doi: 10.1128/jb.169.9.3982-3987.1987

Characterization of 2,3-dihydroxybenzoic acid from Nocardia asteroides GUH-2.

G J Feistner, B L Beaman
PMCID: PMC213697  PMID: 3305477

Abstract

Culture filtrates of virulent Nocardia asteroides GUH-2 after growth in acetate minimal medium displayed an absorbance maximum at 320 nm. After isolation by polyamide extraction and anion chromatography, a UV-active compound with this absorbance was shown to be 2,3-dihydroxybenzoic acid (DHB) by nuclear magnetic resonance, gas chromatographic, and mass spectrometric techniques. DHB production under several culture conditions was quantified by a standard high-pressure liquid chromatography assay. Under iron deficiency conditions, N. asteroides GUH-2 excreted up to 11 mg of DHB per liter into the culture medium. No DHB was detected when N. asteroides GUH-2 was grown in an iron-rich medium. With the less virulent strain N. asteroides 10905, DHB was not found under any condition tested.

Full text

PDF
3985

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaman B. L., Black C. M., Doughty F., Beaman L. Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbicidal activities of human polymorphonuclear neutrophils. Infect Immun. 1985 Jan;47(1):135–141. doi: 10.1128/iai.47.1.135-141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaman B. L., Burnside J., Edwards B., Causey W. Nocardial infections in the United States, 1972-1974. J Infect Dis. 1976 Sep;134(3):286–289. doi: 10.1093/infdis/134.3.286. [DOI] [PubMed] [Google Scholar]
  3. Beaman B. L. Structural and biochemical alterations of Nocardia asteroides cell walls during its growth cycle. J Bacteriol. 1975 Sep;123(3):1235–1253. doi: 10.1128/jb.123.3.1235-1253.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaman L., Beaman B. L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiol. 1984;38:27–48. doi: 10.1146/annurev.mi.38.100184.000331. [DOI] [PubMed] [Google Scholar]
  5. Black C. M., Beaman B. L., Donovan R. M., Goldstein E. Intracellular acid phosphatase content and ability of different macrophage populations to kill Nocardia asteroides. Infect Immun. 1985 Feb;47(2):375–383. doi: 10.1128/iai.47.2.375-383.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borregaard N. The respiratory burst of phagocytosis: biochemistry and subcellular localization. Immunol Lett. 1985;11(3-4):165–171. doi: 10.1016/0165-2478(85)90164-6. [DOI] [PubMed] [Google Scholar]
  7. Boxer L. A., Allen J. M., Baehner R. L. Potentiation of polymorphonuclear leukocyte motile functions by 2,3-dihydroxybenzoic acid. J Lab Clin Med. 1978 Nov;92(5):730–736. [PubMed] [Google Scholar]
  8. Boxer L. A., Harris R. E., Baehner R. L. Regulation of membrane peroxidation in health and disease. Pediatrics. 1979 Nov;64(5 Pt 2 Suppl):713–718. [PubMed] [Google Scholar]
  9. Bryce G. F., Brot N. Studies on the enzymatic synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry. 1972 Apr 25;11(9):1708–1715. doi: 10.1021/bi00759a028. [DOI] [PubMed] [Google Scholar]
  10. Corbin J. L., Bulen W. A. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di-92,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969 Mar;8(3):757–762. doi: 10.1021/bi00831a002. [DOI] [PubMed] [Google Scholar]
  11. Crichton R. R. Interactions between iron metabolism and oxygen activation. Ciba Found Symp. 1978 Jun 6;(65):57–76. doi: 10.1002/9780470715413.ch5. [DOI] [PubMed] [Google Scholar]
  12. Davis-Scibienski C., Beaman B. L. Interaction of Nocardia asteroides with rabbit alveolar macrophages: association of virulence, viability, ultrastructural damage, and phagosome-lysosome fusion. Infect Immun. 1980 May;28(2):610–619. doi: 10.1128/iai.28.2.610-619.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davis-Scibienski C., Beaman B. L. Interaction of Nocardia asteroides with rabbit alveolar macrophages: effect of growth phase and viability on phagosome-lysosome fusion. Infect Immun. 1980 Jul;29(1):24–29. doi: 10.1128/iai.29.1.24-29.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Filice G. A. Resistance of Nocardia asteroides to oxygen-dependent killing by neutrophils. J Infect Dis. 1983 Nov;148(5):861–867. doi: 10.1093/infdis/148.5.861. [DOI] [PubMed] [Google Scholar]
  15. Graziano J. H., Grady R. W., Cerami A. The identification of 2, 3-dihydroxybenzoic acid as a potentially useful iron-chelating drug. J Pharmacol Exp Ther. 1974 Sep;190(3):570–575. [PubMed] [Google Scholar]
  16. Heindl A., Rau O., Spiteller G. Identification of aromatic dihydroxy acids in biological fluids. Biomed Mass Spectrom. 1985 Feb;12(2):59–66. doi: 10.1002/bms.1200120203. [DOI] [PubMed] [Google Scholar]
  17. Jones R. L., Peterson C. M., Grady R. W., Kumbaraci T., Cerami A., Graziano J. H. Effects of iron chelators and iron overload on Salmonella infection. Nature. 1977 May 5;267(5606):63–65. doi: 10.1038/267063a0. [DOI] [PubMed] [Google Scholar]
  18. Leong S. A., Neilands J. B. Relationship of siderophore-mediated iron assimilation to virulence in crown gall disease. J Bacteriol. 1981 Aug;147(2):482–491. doi: 10.1128/jb.147.2.482-491.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leong S. A., Neilands J. B. Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys. 1982 Oct 15;218(2):351–359. doi: 10.1016/0003-9861(82)90356-3. [DOI] [PubMed] [Google Scholar]
  20. Liu W. C., Fisher S. M., Wells J. S., Jr, Ricca C. S., Principe P. A., Trejo W. H., Bonner D. P., Gougoutos J. Z., Toeplitz B. K., Sykes R. B. Siderochelin, a new ferrous-ion chelating agent produced by Nocardia. J Antibiot (Tokyo) 1981 Jul;34(7):791–799. doi: 10.7164/antibiotics.34.791. [DOI] [PubMed] [Google Scholar]
  21. Neilands J. B. Siderophores of bacteria and fungi. Microbiol Sci. 1984 Apr;1(1):9–14. [PubMed] [Google Scholar]
  22. Ratledge C., Chaudhry M. A. Accumulation of iron-binding phenolic acids by Actinomycetales and other organisms related to the Mycobacteria. J Gen Microbiol. 1971 Apr;66(1):71–78. doi: 10.1099/00221287-66-1-71. [DOI] [PubMed] [Google Scholar]
  23. Segal A. W., Allison A. C. Oxygen consumption by stimulated human neutrophils. Ciba Found Symp. 1978 Jun 6;(65):205–223. doi: 10.1002/9780470715413.ch13. [DOI] [PubMed] [Google Scholar]
  24. Simpson G. L., Stinson E. B., Egger M. J., Remington J. S. Nocardial infections in the immunocompromised host: A detailed study in a defined population. Rev Infect Dis. 1981 May-Jun;3(3):492–507. doi: 10.1093/clinids/3.3.492. [DOI] [PubMed] [Google Scholar]
  25. Weinberg E. D. Roles of iron in infection and neoplasia. J Pharmacol. 1985 Oct-Dec;16(4):358–364. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES