Abstract
A sulfur:ferric ion oxidoreductase that utilizes ferric ion (Fe3+) as an electron acceptor of elemental sulfur was purified from iron-grown Thiobacillus ferrooxidans to an electrophoretically homogeneous state. Under anaerobic conditions in the presence of Fe3+, the enzyme reduced 4 mol of Fe3+ with 1 mol of elemental sulfur to give 4 mol of Fe2+ and 1 mol of sulfite, indicating that it corresponds to a ferric ion-reducing system (T. Sugio, C. Domatsu, O. Munakata, T. Tano, and K. Imai, Appl. Environ. Microbiol. 49:1401-1406, 1985). Under aerobic conditions, sulfite, but not Fe2+, was produced during the oxidation of elemental sulfur by this enzyme because the Fe2+ produced was rapidly reoxidized chemically by molecular oxygen. The possibility that Fe3+ serves as an electron acceptor under aerobic conditions was ascertained by adding o-phenanthroline, which chelates Fe2+, to the reaction mixture. Sulfur:ferric ion oxidoreductase had an apparent molecular weight of 46,000, and it is composed of two identical subunits (Mr = 23,000) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sulfur oxidation by this enzyme was absolutely dependent on the presence of reduced glutathione. The enzyme had an isoelectric point and a pH optimum at pH 4.6 and 6.5, respectively. Almost all the activity of sulfur:ferric ion oxidoreductase was observed in the osmotic shock fluid of the cells, suggesting that it was localized in the periplasmic space of the cells.
Full text
PDF![4916](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/59841ec815fe/jbacter00201-0056.png)
![4917](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/bbb0453ff306/jbacter00201-0057.png)
![4918](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/418f5e8fc638/jbacter00201-0058.png)
![4919](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/b1bfa89ef59e/jbacter00201-0059.png)
![4920](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/5f667e796c41/jbacter00201-0060.png)
![4921](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/069f8f5501de/jbacter00201-0061.png)
![4922](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca75/213886/9d089f67e796/jbacter00201-0062.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccleston M., Kelly D. P. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol. 1978 Jun;134(3):718–727. doi: 10.1128/jb.134.3.718-727.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper A. B., DiSpirito A. A. In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol Rev. 1985 Jun;49(2):140–157. doi: 10.1128/mr.49.2.140-157.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Hypothesis: cation-translocating adenosine triphosphatase models: how direct is the participation of adenosine triphosphate and its hydrolysis products in cation translocation? FEBS Lett. 1973 Jul 15;33(3):267–274. doi: 10.1016/0014-5793(73)80209-1. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–1159. doi: 10.1126/science.388618. [DOI] [PubMed] [Google Scholar]
- Silver M., Lundgren D. G. Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem. 1968 May;46(5):457–461. doi: 10.1139/o68-069. [DOI] [PubMed] [Google Scholar]
- Silver M., Lundgren D. G. The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem. 1968 Oct;46(10):1215–1220. doi: 10.1139/o68-181. [DOI] [PubMed] [Google Scholar]
- Sugio T., Domatsu C., Munakata O., Tano T., Imai K. Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol. 1985 Jun;49(6):1401–1406. doi: 10.1128/aem.49.6.1401-1406.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugio T., Domatsu C., Tano T., Imai K. Role of Ferrous Ions in Synthetic Cobaltous Sulfide Leaching of Thiobacillus ferrooxidans. Appl Environ Microbiol. 1984 Sep;48(3):461–467. doi: 10.1128/aem.48.3.461-467.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I., Silver M. The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochim Biophys Acta. 1966 Jul 6;122(1):22–33. doi: 10.1016/0926-6593(66)90088-9. [DOI] [PubMed] [Google Scholar]
- Vestal J. R., Lundgren D. G. The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans). Can J Biochem. 1971 Oct;49(10):1125–1130. doi: 10.1139/o71-162. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]