Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 May 1;135(5):1071–1094. doi: 10.1084/jem.135.5.1071

CYTODYNAMICS OF THE IMMUNE RESPONSE IN TWO LINES OF MICE GENETICALLY SELECTED FOR "HIGH" AND "LOW" ANTIBODY SYNTHESIS

G Biozzi 1, C Stiffel 1, D Mouton 1, Y Bouthillier 1, C Decreusefond 1
PMCID: PMC2138980  PMID: 4553851

Abstract

Two lines of mice have been separated by selective breeding for the character "agglutinin production to heterologous erythrocytes." Around the 18th generation of selection the two lines could be considered as homozygous for the character investigated. This trait is under the control of a group of additive genes. The interline difference in the production of anti-SE agglutinins was verified for the range of antigen doses from subimmunogenic to maximal. After intravenous immunization with an optimal dose of SE, the duration of the exponential rise in serum antibody was 4–5 days in both lines. At this time most of the interline difference in responsiveness is already expressed. A cytodynamic study carried out in terms of plaque-forming cells (PFC) and rosette-forming cells (RFC) in the spleen during the exponential phase showed that the principal interline difference is found in the doubling time of cells engaged in the immune response. More precise cytodynamic analysis made in terms of RFC showed that the doubling time of RFC is 9 hr in high responder and 16 hr in low responder mice. The duration of the exponential rise and the number of target cells stimulated by antigen is the same in both lines. The interline difference at the end of the exponential rise (4 days postimmunization) is larger in terms of serum antibody (30–40-fold) than in terms of PFC or RFC (20- and 11-fold, respectively). A morphological study of RFC in nonimmunized mice showed that about 90% of rosettes were formed by small lymphocytes in both lines. The remainder were medium-sized lymphocytes. At the peak of the cellular response the RFC have differentiated into large lymphocytes, blast cells, and plasma cells. The contribution of plasma cells to RFC is much greater in the high than in the low line. The cytodynamic and morphologic results presented in this article are compatible with the hypothesis that the group of genes segregated in each line during the selective breeding control and regulate the rate of multiplication and differentiation of the antibody-producing cells.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Byrt P. Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature. 1969 Jun 28;222(5200):1291–1292. doi: 10.1038/2221291a0. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Leduc E. H. Detection of simultaneous antibody synthesis in plasma cells and specialized lymphocytes in rabbit lymph nodes. J Exp Med. 1970 Jun 1;131(6):1137–1168. doi: 10.1084/jem.131.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BIOZZI G., BENACERRAF B., HALPERN B. N. Quantitative study of the granulopectic activity of the reticulo-endothelial system. II. A study of the kinetics of the R. E. S. in relation to the dose of carbon injected; relationship between the weight of the organs and their activity. Br J Exp Pathol. 1953 Aug;34(4):441–457. [PMC free article] [PubMed] [Google Scholar]
  4. Bach J. F., Muller J. Y., Dardenne M. In vivo specific antigen recognition by rosette forming cells. Nature. 1970 Sep 19;227(5264):1251–1252. doi: 10.1038/2271251a0. [DOI] [PubMed] [Google Scholar]
  5. Biozzi G., Asofsky R., Lieberman R., Stiffel C., Mouton D., Benacerraf B. Serum concentrations and allotypes of immunoglobulins in two lines of mice genetically selected for "high" or "low" antibody synthesis. J Exp Med. 1970 Oct 1;132(4):752–764. doi: 10.1084/jem.132.4.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biozzi G., Binaghi R. A., Stiffel C., Mouton D. Production of different classes of immunoglobulins by individual cells in the guinea-pig. Immunology. 1969 Mar;16(3):349–359. [PMC free article] [PubMed] [Google Scholar]
  7. Biozzi G., Stiffel C., Mouton D., Bouthillier Y., Decreusefond C. A kinetic study of antibody producing cells in the spleen of mice immunized intravenously with sheep erythrocytes. Immunology. 1968 Jan;14(1):7–20. [PMC free article] [PubMed] [Google Scholar]
  8. Brody T. Identification of two cell populations required for mouse immunocompetence. J Immunol. 1970 Jul;105(1):126–138. [PubMed] [Google Scholar]
  9. CAPALBO E. E., MAKINODAN T. DOUBLING TIME OF MOUSE SPLEEN CELLS DURING THE LATENT AND LOG PHASES OF PRIMARY ANTIBODY RESPONSE. J Immunol. 1964 Feb;92:234–242. [PubMed] [Google Scholar]
  10. Cunningham A. J., Smith J. B., Mercer E. H. Antibody formation by single cells from lymph nodes and efferent lymph of sheep. J Exp Med. 1966 Oct 1;124(4):701–714. doi: 10.1084/jem.124.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duffus W. P., Allan D. The kinetics and morphology of the rosette-forming cell response in the popliteal lymph nodes of rats. Immunology. 1971 Mar;20(3):345–361. [PMC free article] [PubMed] [Google Scholar]
  12. Gershon H., Feldman M. Studies on the immune reconstitution of sublethally irradiated mice by peritoneal macrophages. Immunology. 1968 Dec;15(6):827–835. [PMC free article] [PubMed] [Google Scholar]
  13. Gowans J. L. Cellular events during the inducation of immune responses. Int Arch Allergy Appl Immunol. 1971;41(1):1–3. doi: 10.1159/000230478. [DOI] [PubMed] [Google Scholar]
  14. Greaves M. F., Möller E. Studies on antigen-binding cells. I. The origin of reactive cells. Cell Immunol. 1970 Oct;1(4):372–385. doi: 10.1016/0008-8749(70)90015-8. [DOI] [PubMed] [Google Scholar]
  15. Gudat F. G., Harris T. N., Harris S., Hummeler K. Studies on antibody-producing cells. I. Ultrastructure of 19S and 7S antibody-producing cells. J Exp Med. 1970 Sep 1;132(3):448–474. doi: 10.1084/jem.132.3.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gudat F. G., Harris T. N., Harris S., Hummeler K. Studies on antibody-producing cells. II. Appearance of 3 H-thymidine-labeled rosette-forming cells. J Exp Med. 1971 Feb 1;133(2):305–320. doi: 10.1084/jem.133.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hardy D., Rowley D. The production of antibody to bovine serum albumin in unresponsive (Sobey) mice. Immunology. 1968 Mar;14(3):401–407. [PMC free article] [PubMed] [Google Scholar]
  18. Harris T. N., Hummeler K., Harris S. Electron microscopic observations on antibody-producing lymph node cells. J Exp Med. 1966 Jan 1;123(1):161–172. doi: 10.1084/jem.123.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hege J. S., Cole L. J. Antibody plaque-forming cells: kinetics of primary and secondary responses. J Immunol. 1966 Apr;96(4):559–569. [PubMed] [Google Scholar]
  20. Hoffmann M., Dutton R. W. Immune response restoration with macrophage culture supernatants. Science. 1971 Jun 4;172(3987):1047–1048. doi: 10.1126/science.172.3987.1047. [DOI] [PubMed] [Google Scholar]
  21. Howard J. G., Elson J., Christie G. H., Kinsky R. G. Studies on immunological paralysis. II. The detection and significance of antibod-forming cells in the spleen during immunological paralysis with type 3 pneumococcal polysaccharide. Clin Exp Immunol. 1969 Jan;4(1):41–53. [PMC free article] [PubMed] [Google Scholar]
  22. Howard J. G., Siskind G. W. Studies on immunological paralysis. I. A consideration of macrophage involvement in the induction of paralysis and immunity by type II pneumococcal polysaccharide. Clin Exp Immunol. 1969 Jan;4(1):29–39. [PMC free article] [PubMed] [Google Scholar]
  23. Jerne N. K., Nordin A. A. Plaque Formation in Agar by Single Antibody-Producing Cells. Science. 1963 Apr 26;140(3565):405–405. doi: 10.1126/science.140.3565.405. [DOI] [PubMed] [Google Scholar]
  24. Laskov R. Rosette forming cells in non-immunized mice. Nature. 1968 Aug 31;219(5157):973–975. doi: 10.1038/219973a0. [DOI] [PubMed] [Google Scholar]
  25. McConnell I., Munro A., Gurner B. W., Coombs R. R. Studies on actively allergized cells. I. The cyto-dynamics and morphology of rosete-forming lymph node cells in mice and inhibition of rosette-formation with antibody to mouse immunoglobulins. Int Arch Allergy Appl Immunol. 1969;35(3):209–227. [PubMed] [Google Scholar]
  26. McDevitt H. O., Benacerraf B. Genetic control of specific immune responses. Adv Immunol. 1969;11:31–74. doi: 10.1016/s0065-2776(08)60477-0. [DOI] [PubMed] [Google Scholar]
  27. Moav N., Harris T. N. Rosette formation in relation to active synthesis of antibody. J Immunol. 1970 Dec;105(6):1501–1511. [PubMed] [Google Scholar]
  28. Mosier D. E. A requirement for two cell types for antibody formation in vitro. Science. 1967 Dec 22;158(3808):1573–1575. doi: 10.1126/science.158.3808.1573. [DOI] [PubMed] [Google Scholar]
  29. NEVEU T., BRANELLEC A., BIOZZI G. PROPRI'ET'ES ADJUVANTES DE CORYNEBACTERIUM PARVUM SUR LA PRODUCTION D'ANTICORPS ET SUR L'INDUCTION DE L'HYPERSENSIBILIT'E RETARD'EE ENVERS LES PROT'EINES CONJUGU'EES. Ann Inst Pasteur (Paris) 1964 May;106:771–777. [PubMed] [Google Scholar]
  30. Nossal G. J., Bussard A. E., Lewis H., Mazie J. C. In vitro stimulation of antibody formation by peritoneal cells. I. Plaque technique of high sensitivity enabling access to the cells. J Exp Med. 1970 May 1;131(5):894–916. doi: 10.1084/jem.131.5.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. PERKINS E. H., MAKINODAN T. THE SUPPRESSIVE ROLE OF MOUSE PERITONEAL PHAGOCYTES IN AGGLUTININ RESPONSE. J Immunol. 1965 May;94:765–777. [PubMed] [Google Scholar]
  32. ROWLEY D. A. The effect of splenectomy on the formation of circulating antibody in the adult male albino rat. J Immunol. 1950 Apr;64(4):289–295. [PubMed] [Google Scholar]
  33. Reyes F., Bach J. F. Rosette-forming cells in the unimmunized mouse: morphological studies with phase contrast and electron microscopy. Cell Immunol. 1971 Apr;2(2):182–198. doi: 10.1016/0008-8749(71)90037-2. [DOI] [PubMed] [Google Scholar]
  34. Shearer G. M., Cudkowicz G. Cluster formation in vitro by mouse spleen cells and sheep erythrocytes. J Immunol. 1968 Dec;101(6):1264–1270. [PubMed] [Google Scholar]
  35. Shearer G. M., Cudkowicz G., Connell M. S., Priore R. L. Cellular differentiation of the immune system of mice. I. Separate splenic antigen-sensitive units for different types of anti-sheep antibody-forming cells. J Exp Med. 1968 Sep 1;128(3):437–457. doi: 10.1084/jem.128.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sobey W. R., Magrath J. M., Reisner A. H. Genetically controlled specific immunological unresponsiveness. Immunology. 1966 Nov;11(5):511–513. [PMC free article] [PubMed] [Google Scholar]
  37. Stiffel C., Mouton D., Decreusefond C., Bouthillier Y., Biozzi G. Etude cytodynamique de la réponse immunologique par la méthode de l'immunocyto-adhérence. Bull Soc Chim Biol (Paris) 1968 Sep 28;50(5):1137–1147. [PubMed] [Google Scholar]
  38. Storb U., Bauer W., Storb R., Fliedner T. M., Weiser R. S. Ultrastructure of rosette-forming cells in the mouse during the antibody response. J Immunol. 1969 Jun;102(6):1474–1485. [PubMed] [Google Scholar]
  39. Tannenberg W. J., Malaviya A. N. The life cycle of antibody-forming cells. I. The generation time of 19S hemolytic plaque-forming cells during the primary and secondary responses. J Exp Med. 1968 Nov 1;128(5):895–925. doi: 10.1084/jem.128.5.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wigzell H., Andersson B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J Exp Med. 1969 Jan 1;129(1):23–36. doi: 10.1084/jem.129.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson J. D. The relationship of antibody-forming cells to rosette-forming cells. Immunology. 1971 Aug;21(2):233–245. [PMC free article] [PubMed] [Google Scholar]
  42. Wortis H. H., Taylor R. B., Dresser D. W. Antibody production studied by means of the LHG assay. I. The splenic response of CBA mice to sheep erythrocytes. Immunology. 1966 Dec;11(6):603–616. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES