Abstract
The crystal structure of Limulus polyphemus subunit type II hemocyanin in the deoxygenated state has been determined to a resolution of 2.18 A. Phase information for this first structure of a cheliceratan hemocyanin was obtained by molecular replacement using the crustacean hemocyanin structure of Panulirus interruptus. The most striking observation in the Limulus structure is the unexpectedly large distance of 4.6 A between both copper ions in the oxygen-binding site. Each copper has approximate trigonal planar coordination by three histidine N epsilon atoms. No bridging ligand between the copper ions could be detected. Other important new discoveries are (1) the presence of a cis-peptide bond between Glu 309 and Ser 310, with the carbonyl oxygen of the peptide plane hydrogen bonded to the N delta atom of the copper B ligand His 324; (2) localization of a chloride-binding site in the interface between the first and second domain; (3) localization of a putative calcium-binding site in the third domain. Furthermore, comparison of Limulus versus Panulirus hemocyanin revealed considerable tertiary and quaternary rigid body movements, although the overall folds are similar. Within the subunit, the first domain is rotated by about 7.5 degrees with respect to the other two domains, whereas within the hexamer the major movement is a 3.1 degrees rotation of the trimers with respect to each other. The rigid body rotation of the first domain suggests a structural mechanism for the allosteric regulation by chloride ions and probably causes the cooperative transition of the hexamer between low and high oxygen affinity states. In this postulated mechanism, the fully conserved Phe49 is the key residue that couples conformational changes of the dinuclear copper site into movements of the first domain.
Full Text
The Full Text of this article is available as a PDF (6.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bak H. J., Beintema J. J. Panulirus interruptus hemocyanin. The elucidation of the complete amino acid sequence of subunit a. Eur J Biochem. 1987 Dec 1;169(2):333–348. doi: 10.1111/j.1432-1033.1987.tb13616.x. [DOI] [PubMed] [Google Scholar]
- Bonaventura C., Sullivan B., Bonaventura J., Bourne S. CO binding by hemocyanins of Limulus polyphemus, Busycon carica, and Callinectes sapidus. Biochemistry. 1974 Nov 5;13(23):4784–4789. doi: 10.1021/bi00720a016. [DOI] [PubMed] [Google Scholar]
- Brenowitz M., Bonaventura C., Bonaventura J., Gianazza E. Subunit composition of high molecular weight oligomer: Limulus polyphemus hemocyanin. Arch Biochem Biophys. 1981 Sep;210(2):748–761. doi: 10.1016/0003-9861(81)90242-3. [DOI] [PubMed] [Google Scholar]
- Brenowitz M., Bonaventura C., Bonaventura J. Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Arch Biochem Biophys. 1984 Apr;230(1):238–249. doi: 10.1016/0003-9861(84)90105-x. [DOI] [PubMed] [Google Scholar]
- Brouwer M., Bonaventura C., Bonaventura J. Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin. Prog Clin Biol Res. 1982;81:231–256. [PubMed] [Google Scholar]
- Brouwer M., Bonaventura C., Bonaventura J. Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Biochemistry. 1983 Sep 27;22(20):4713–4723. doi: 10.1021/bi00289a016. [DOI] [PubMed] [Google Scholar]
- Brouwer M., Bonaventura C., Bonaventura J. Oxygen binding by Limulus polyphemus hemocyanin: allosteric modulation by chloride ions. Biochemistry. 1977 Aug 23;16(17):3897–3902. doi: 10.1021/bi00636a027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brouwer M., Serigstad B. Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers. Biochemistry. 1989 Oct 31;28(22):8819–8827. doi: 10.1021/bi00448a021. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Dooley D. M., Scott R. A., Ellinghaus J., Solomon E. I., Gray H. B. Magnetic susceptibility studies of laccase and oxyhemocyanin. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3019–3022. doi: 10.1073/pnas.75.7.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickman N. C., Himmelwright R. S., Solomon E. I. Geometric and electronic structure of oxyhemocyanin: spectral and chemical correlations to met apo, half met, met, and dimer active sites. Proc Natl Acad Sci U S A. 1979 May;76(5):2094–2098. doi: 10.1073/pnas.76.5.2094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyerle F., Schartau W. Hemocyanins in spiders, XX. Sulfhydryl groups and disulfide bridges in subunit d of Eurypelma californicum hemocyanin. Biol Chem Hoppe Seyler. 1985 Apr;366(4):403–409. doi: 10.1515/bchm3.1985.366.1.403. [DOI] [PubMed] [Google Scholar]
- Fager L. Y., Alben J. O. Structure of the carbon monoxide binding site of hemocyanins studied by Fourier transform infrared spectroscopy. Biochemistry. 1972 Dec 5;11(25):4786–4792. doi: 10.1021/bi00775a023. [DOI] [PubMed] [Google Scholar]
- Fujii T., Sakurai H., Izumi S., Tomino S. Structure of the gene for the arylphorin-type storage protein SP 2 of Bombyx mori. J Biol Chem. 1989 Jul 5;264(19):11020–11025. [PubMed] [Google Scholar]
- Gaykema W. P., Volbeda A., Hol W. G. Structure determination of Panulirus interruptus haemocyanin at 3.2 A resolution. Successful phase extension by sixfold density averaging. J Mol Biol. 1986 Jan 20;187(2):255–275. doi: 10.1016/0022-2836(86)90233-0. [DOI] [PubMed] [Google Scholar]
- Hazes B., Hol W. G. Comparison of the hemocyanin beta-barrel with other Greek key beta-barrels: possible importance of the "beta-zipper" in protein structure and folding. Proteins. 1992 Mar;12(3):278–298. doi: 10.1002/prot.340120306. [DOI] [PubMed] [Google Scholar]
- Herzberg O., Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins. 1991;11(3):223–229. doi: 10.1002/prot.340110307. [DOI] [PubMed] [Google Scholar]
- Jackman M. P., Hajnal A., Lerch K. Albino mutants of Streptomyces glaucescens tyrosinase. Biochem J. 1991 Mar 15;274(Pt 3):707–713. doi: 10.1042/bj2740707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G., Brown N., Manczak M., Hiremath S., Kafatos F. C. Molecular cloning, regulation, and complete sequence of a hemocyanin-related, juvenile hormone-suppressible protein from insect hemolymph. J Biol Chem. 1990 May 25;265(15):8596–8602. [PubMed] [Google Scholar]
- Lang W. H., van Holde K. E. Cloning and sequencing of Octopus dofleini hemocyanin cDNA: derived sequences of functional units Ode and Odf. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):244–248. doi: 10.1073/pnas.88.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesk A. M., Hardman K. D. Computer-generated pictures of proteins. Methods Enzymol. 1985;115:381–390. doi: 10.1016/0076-6879(85)15027-5. [DOI] [PubMed] [Google Scholar]
- Linzen B., Soeter N. M., Riggs A. F., Schneider H. J., Schartau W., Moore M. D., Yokota E., Behrens P. Q., Nakashima H., Takagi T. The structure of arthropod hemocyanins. Science. 1985 Aug 9;229(4713):519–524. doi: 10.1126/science.4023698. [DOI] [PubMed] [Google Scholar]
- Magnus K. A., Lattman E. E., Volbeda A., Hol W. G. Hexamers of subunit II from Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules. Proteins. 1991;9(4):240–247. doi: 10.1002/prot.340090403. [DOI] [PubMed] [Google Scholar]
- Messerschmidt A., Rossi A., Ladenstein R., Huber R., Bolognesi M., Gatti G., Marchesini A., Petruzzelli R., Finazzi-Agró A. X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol. 1989 Apr 5;206(3):513–529. doi: 10.1016/0022-2836(89)90498-1. [DOI] [PubMed] [Google Scholar]
- Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
- Nakashima H., Behrens P. Q., Moore M. D., Yokota E., Riggs A. F. Structure of hemocyanin II from the horseshoe crab, Limulus polyphemus. Sequences of the overlapping peptides, ordering the CNBr fragments, and the complete amino acid sequence. J Biol Chem. 1986 Aug 15;261(23):10526–10533. [PubMed] [Google Scholar]
- Naumann U., Scheller K. Complete cDNA and gene sequence of the developmentally regulated arylphorin of Calliphora vicina and its homology to insect hemolymph proteins and arthropod hemocyanins. Biochem Biophys Res Commun. 1991 Jun 28;177(3):963–972. doi: 10.1016/0006-291x(91)90632-h. [DOI] [PubMed] [Google Scholar]
- Neuteboom B., Jekel P. A., Beintema J. J. Primary structure of hemocyanin subunit c from Panulirus interruptus. Eur J Biochem. 1992 May 15;206(1):243–249. doi: 10.1111/j.1432-1033.1992.tb16922.x. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
- Sakurai H., Fujii T., Izumi S., Tomino S. Complete nucleotide sequence of gene for sex-specific storage protein of Bombyx mori. Nucleic Acids Res. 1988 Aug 11;16(15):7717–7718. doi: 10.1093/nar/16.15.7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soeter N. M., Jekel P. A., Beintema J. J., Volbeda A., Hol W. G. Primary and tertiary structures of the first domain of Panulirus interruptus hemocyanin and comparison of arthropod hemocyanins. Eur J Biochem. 1987 Dec 1;169(2):323–332. doi: 10.1111/j.1432-1033.1987.tb13615.x. [DOI] [PubMed] [Google Scholar]
- Sullivan B., Bonaventura J., Bonaventura C. Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2558–2562. doi: 10.1073/pnas.71.6.2558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thamann T. J., Loehr J. S., Loehr T. M. Resonance Raman study of oxyhemocyain with unsymmetrically labeled oxygen. J Am Chem Soc. 1977 Jun 8;99(12):4187–4189. doi: 10.1021/ja00454a063. [DOI] [PubMed] [Google Scholar]
- Voit R., Feldmaier-Fuchs G. Arthropod hemocyanins. Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e. J Biol Chem. 1990 Nov 15;265(32):19447–19452. [PubMed] [Google Scholar]
- Voll W., Voit R. Characterization of the gene encoding the hemocyanin subunit e from the tarantula Eurypelma californicum. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5312–5316. doi: 10.1073/pnas.87.14.5312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willott E., Wang X. Y., Wells M. A. cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein. Homology to arthropod hemocyanins. J Biol Chem. 1989 Nov 15;264(32):19052–19059. [PubMed] [Google Scholar]
- van Holde K. E., Miller K. I. Haemocyanins. Q Rev Biophys. 1982 Feb;15(1):1–129. doi: 10.1017/s0033583500002705. [DOI] [PubMed] [Google Scholar]