Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Nov;3(11):2064–2072. doi: 10.1002/pro.5560031119

Analysis of hydrophobicity in the alpha and beta chemokine families and its relevance to dimerization.

D G Covell 1, G W Smythers 1, A M Gronenborn 1, G M Clore 1
PMCID: PMC2142647  PMID: 7703852

Abstract

The chemokine family of chemotactic cytokines plays a key role in orchestrating the immune response. The family has been divided into 2 subfamilies, alpha and beta, based on the spacing of the first 2 cysteine residues, function, and chromosomal location. Members within each subfamily have 25-70% sequence identity, whereas the amino acid identity between members of the 2 subfamilies ranges from 20 to 40%. A quantitative analysis of the hydrophobic properties of 11 alpha and 9 beta chemokine sequences, based on the coordinates of the prototypic alpha and beta chemokines, interleukin-8 (IL-8), and human macrophage inflammatory protein-1 beta (hMIP-1 beta), respectively, is presented. The monomers of the alpha and beta chemokines have their strongest core hydrophobic cluster at equivalent positions, consistent with their similar tertiary structures. In contrast, the pattern of monomer surface hydrophobicity between the alpha and beta chemokines differs in a manner that is fully consistent with the observed differences in quaternary structure. The most hydrophobic surface clusters on the monomer subunits are located in very different regions of the alpha and beta chemokines and comprise in each case the amino acids that are buried at the interface of their respective dimers. The theoretical analysis of hydrophobicity strongly supports the hypothesis that the distinct dimers observed for IL-8 and hMIP-1 beta are preserved for all the alpha and beta chemokines, respectively. This provides a rational explanation for the lack of receptor crossbinding and reactivity between the alpha and beta chemokine subfamilies.

Full Text

The Full Text of this article is available as a PDF (9.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179. [PubMed] [Google Scholar]
  3. Baldwin E. T., Weber I. T., St Charles R., Xuan J. C., Appella E., Yamada M., Matsushima K., Edwards B. F., Clore G. M., Gronenborn A. M. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):502–506. doi: 10.1073/pnas.88.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christenson H. K., Claesson P. M. Cavitation and the interaction between macroscopic hydrophobic surfaces. Science. 1988 Jan 22;239(4838):390–392. doi: 10.1126/science.239.4838.390. [DOI] [PubMed] [Google Scholar]
  5. Clore G. M., Appella E., Yamada M., Matsushima K., Gronenborn A. M. Three-dimensional structure of interleukin 8 in solution. Biochemistry. 1990 Feb 20;29(7):1689–1696. doi: 10.1021/bi00459a004. [DOI] [PubMed] [Google Scholar]
  6. Clore G. M., Gronenborn A. M. Comparison of the solution nuclear magnetic resonance and crystal structures of interleukin-8. Possible implications for the mechanism of receptor binding. J Mol Biol. 1991 Feb 20;217(4):611–620. doi: 10.1016/0022-2836(91)90518-b. [DOI] [PubMed] [Google Scholar]
  7. Clubb R. T., Omichinski J. G., Clore G. M., Gronenborn A. M. Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type 1 human interleukin-8 receptor. FEBS Lett. 1994 Jan 24;338(1):93–97. doi: 10.1016/0014-5793(94)80123-1. [DOI] [PubMed] [Google Scholar]
  8. Cornette J. L., Cease K. B., Margalit H., Spouge J. L., Berzofsky J. A., DeLisi C. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol. 1987 Jun 5;195(3):659–685. doi: 10.1016/0022-2836(87)90189-6. [DOI] [PubMed] [Google Scholar]
  9. Covell D. G., Jernigan R. L. Conformations of folded proteins in restricted spaces. Biochemistry. 1990 Apr 3;29(13):3287–3294. doi: 10.1021/bi00465a020. [DOI] [PubMed] [Google Scholar]
  10. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  12. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  13. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
  14. Lodi P. J., Garrett D. S., Kuszewski J., Tsang M. L., Weatherbee J. A., Leonard W. J., Gronenborn A. M., Clore G. M. High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science. 1994 Mar 25;263(5154):1762–1767. doi: 10.1126/science.8134838. [DOI] [PubMed] [Google Scholar]
  15. Mayo K. H., Chen M. J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy. Biochemistry. 1989 Nov 28;28(24):9469–9478. doi: 10.1021/bi00450a034. [DOI] [PubMed] [Google Scholar]
  16. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  17. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  18. Schall T. J. Biology of the RANTES/SIS cytokine family. Cytokine. 1991 May;3(3):165–183. doi: 10.1016/1043-4666(91)90013-4. [DOI] [PubMed] [Google Scholar]
  19. Skolnick J., Kolinski A. Simulations of the folding of a globular protein. Science. 1990 Nov 23;250(4984):1121–1125. doi: 10.1126/science.250.4984.1121. [DOI] [PubMed] [Google Scholar]
  20. St Charles R., Walz D. A., Edwards B. F. The three-dimensional structure of bovine platelet factor 4 at 3.0-A resolution. J Biol Chem. 1989 Feb 5;264(4):2092–2099. [PubMed] [Google Scholar]
  21. Young L., Jernigan R. L., Covell D. G. A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 1994 May;3(5):717–729. doi: 10.1002/pro.5560030501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES