Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1143–1158. doi: 10.1002/pro.5560030801

Collectins--soluble proteins containing collagenous regions and lectin domains--and their roles in innate immunity.

H J Hoppe 1, K B Reid 1
PMCID: PMC2142914  PMID: 7987210

Abstract

The collectins are a group of mammalian lectins containing collagen-like regions. They include mannan binding protein, bovine conglutinin, lung surfactant protein A, lung surfactant protein D, and a newly discovered bovine protein named collectin-43. These proteins share a very similar modular domain composition and overall 3-dimensional structure. They also appear to play similar biological roles in the preimmune defense against micro-organisms in both serum and lung surfactant. The close evolutionary relationship between the collectins is further emphasized by a common pattern of exons in their genomic structures and the presence of a gene cluster on chromosome 10 in humans that contains the genes known for the human collectins. Studies on the structure/function relationships within the collectins could provide insight into the properties of a growing number of proteins also containing collagenous regions such as C1q, the hibernation protein, the alpha- and beta-ficolins, as well as the membrane acetylcholinesterase and the macrophage scavenger receptor.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barondes S. H. Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci. 1988 Dec;13(12):480–482. doi: 10.1016/0968-0004(88)90235-6. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H. Soluble lectins: a new class of extracellular proteins. Science. 1984 Mar 23;223(4642):1259–1264. doi: 10.1126/science.6367039. [DOI] [PubMed] [Google Scholar]
  3. Benson B., Hawgood S., Schilling J., Clements J., Damm D., Cordell B., White R. T. Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6379–6383. doi: 10.1073/pnas.82.19.6379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevilacqua M., Butcher E., Furie B., Furie B., Gallatin M., Gimbrone M., Harlan J., Kishimoto K., Lasky L., McEver R. Selectins: a family of adhesion receptors. Cell. 1991 Oct 18;67(2):233–233. doi: 10.1016/0092-8674(91)90174-w. [DOI] [PubMed] [Google Scholar]
  5. Brodsky-Doyle B., Leonard K. R., Reid K. B. Circular-dichroism and electron-microscopy studies of human subcomponent C1q before and after limited proteolysis by pepsin. Biochem J. 1976 Nov;159(2):279–286. doi: 10.1042/bj1590279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan P. Y., Takei F. Molecular cloning and characterization of a novel murine T cell surface antigen, YE1/48. J Immunol. 1989 Mar 1;142(5):1727–1736. [PubMed] [Google Scholar]
  7. Christa L., Felin M., Morali O., Simon M. T., Lasserre C., Brechot C., Sève A. P. The human HIP gene, overexpressed in primary liver cancer encodes for a C-type carbohydrate binding protein with lactose binding activity. FEBS Lett. 1994 Jan 3;337(1):114–118. doi: 10.1016/0014-5793(94)80640-3. [DOI] [PubMed] [Google Scholar]
  8. Colley K. J., Baenziger J. U. Biosynthesis and secretion of the rat core-specific lectin. Relationship of post-translational modification and assembly to attainment of carbohydrate binding activity. J Biol Chem. 1987 Mar 5;262(7):3415–3421. [PubMed] [Google Scholar]
  9. Crouch E., Rust K., Veile R., Donis-Keller H., Grosso L. Genomic organization of human surfactant protein D (SP-D). SP-D is encoded on chromosome 10q22.2-23.1. J Biol Chem. 1993 Feb 5;268(4):2976–2983. [PubMed] [Google Scholar]
  10. Curtis B. M., Scharnowske S., Watson A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8356–8360. doi: 10.1073/pnas.89.17.8356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  12. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  13. Drickamer K. Complete amino acid sequence of a membrane receptor for glycoproteins. Sequence of the chicken hepatic lectin. J Biol Chem. 1981 Jun 10;256(11):5827–5839. [PubMed] [Google Scholar]
  14. Drickamer K., Dordal M. S., Reynolds L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem. 1986 May 25;261(15):6878–6887. [PubMed] [Google Scholar]
  15. Drickamer K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature. 1992 Nov 12;360(6400):183–186. doi: 10.1038/360183a0. [DOI] [PubMed] [Google Scholar]
  16. Drickamer K., Mamon J. F., Binns G., Leung J. O. Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species. J Biol Chem. 1984 Jan 25;259(2):770–778. [PubMed] [Google Scholar]
  17. Erbe D. V., Watson S. R., Presta L. G., Wolitzky B. A., Foxall C., Brandley B. K., Lasky L. A. P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J Cell Biol. 1993 Mar;120(5):1227–1235. doi: 10.1083/jcb.120.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Erbe D. V., Wolitzky B. A., Presta L. G., Norton C. R., Ramos R. J., Burns D. K., Rumberger J. M., Rao B. N., Foxall C., Brandley B. K. Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. J Cell Biol. 1992 Oct;119(1):215–227. doi: 10.1083/jcb.119.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ewart K. V., Rubinsky B., Fletcher G. L. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun. 1992 May 29;185(1):335–340. doi: 10.1016/s0006-291x(05)90005-3. [DOI] [PubMed] [Google Scholar]
  20. Eyre D. R., Paz M. A., Gallop P. M. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–748. doi: 10.1146/annurev.bi.53.070184.003441. [DOI] [PubMed] [Google Scholar]
  21. Ezekowitz R. A., Day L. E., Herman G. A. A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J Exp Med. 1988 Mar 1;167(3):1034–1046. doi: 10.1084/jem.167.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ezekowitz R. A., Kuhlman M., Groopman J. E., Byrn R. A. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med. 1989 Jan 1;169(1):185–196. doi: 10.1084/jem.169.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Floros J., Steinbrink R., Jacobs K., Phelps D., Kriz R., Recny M., Sultzman L., Jones S., Taeusch H. W., Frank H. A. Isolation and characterization of cDNA clones for the 35-kDa pulmonary surfactant-associated protein. J Biol Chem. 1986 Jul 5;261(19):9029–9033. [PubMed] [Google Scholar]
  24. Foxall C., Watson S. R., Dowbenko D., Fennie C., Lasky L. A., Kiso M., Hasegawa A., Asa D., Brandley B. K. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J Cell Biol. 1992 May;117(4):895–902. doi: 10.1083/jcb.117.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Friis-Christiansen P., Thiel S., Svehag S. E., Dessau R., Svendsen P., Andersen O., Laursen S. B., Jensenius J. C. In vivo and in vitro antibacterial activity of conglutinin, a mammalian plasma lectin. Scand J Immunol. 1990 Apr;31(4):453–460. doi: 10.1111/j.1365-3083.1990.tb02792.x. [DOI] [PubMed] [Google Scholar]
  26. Geng J. G., Heavner G. A., McEver R. P. Lectin domain peptides from selectins interact with both cell surface ligands and Ca2+ ions. J Biol Chem. 1992 Oct 5;267(28):19846–19853. [PubMed] [Google Scholar]
  27. Geng J. G., Moore K. L., Johnson A. E., McEver R. P. Neutrophil recognition requires a Ca(2+)-induced conformational change in the lectin domain of GMP-140. J Biol Chem. 1991 Nov 25;266(33):22313–22318. [PubMed] [Google Scholar]
  28. Giorda R., Rudert W. A., Vavassori C., Chambers W. H., Hiserodt J. C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990 Sep 14;249(4974):1298–1300. doi: 10.1126/science.2399464. [DOI] [PubMed] [Google Scholar]
  29. Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
  30. Haurum J. S., Thiel S., Jones I. M., Fischer P. B., Laursen S. B., Jensenius J. C. Complement activation upon binding of mannan-binding protein to HIV envelope glycoproteins. AIDS. 1993 Oct;7(10):1307–1313. doi: 10.1097/00002030-199310000-00002. [DOI] [PubMed] [Google Scholar]
  31. Holmskov U., Holt P., Reid K. B., Willis A. C., Teisner B., Jensenius J. C. Purification and characterization of bovine mannan-binding protein. Glycobiology. 1993 Apr;3(2):147–153. doi: 10.1093/glycob/3.2.147. [DOI] [PubMed] [Google Scholar]
  32. Holmskov U., Malhotra R., Sim R. B., Jensenius J. C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today. 1994 Feb;15(2):67–74. doi: 10.1016/0167-5699(94)90136-8. [DOI] [PubMed] [Google Scholar]
  33. Holmskov U., Teisner B., Pedersen N. T., Laursen S. B., Rasmussen H. B., Jensenius J. C. Tissue localization of conglutinin, a bovine C-type lectin. Immunology. 1992 May;76(1):169–173. [PMC free article] [PubMed] [Google Scholar]
  34. Holmskov U., Teisner B., Willis A. C., Reid K. B., Jensenius J. C. Purification and characterization of a bovine serum lectin (CL-43) with structural homology to conglutinin and SP-D and carbohydrate specificity similar to mannan-binding protein. J Biol Chem. 1993 May 15;268(14):10120–10125. [PubMed] [Google Scholar]
  35. Houchins J. P., Yabe T., McSherry C., Bach F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991 Apr 1;173(4):1017–1020. doi: 10.1084/jem.173.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hoyle G. W., Hill R. L. Structure of the gene for a carbohydrate-binding receptor unique to rat kupffer cells. J Biol Chem. 1991 Jan 25;266(3):1850–1857. [PubMed] [Google Scholar]
  37. Ii M., Kurata H., Itoh N., Yamashina I., Kawasaki T. Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine. J Biol Chem. 1990 Jul 5;265(19):11295–11298. [PubMed] [Google Scholar]
  38. Johnston G. I., Cook R. G., McEver R. P. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell. 1989 Mar 24;56(6):1033–1044. doi: 10.1016/0092-8674(89)90636-3. [DOI] [PubMed] [Google Scholar]
  39. Katyal S. L., Singh G., Locker J. Characterization of a second human pulmonary surfactant-associated protein SP-A gene. Am J Respir Cell Mol Biol. 1992 Apr;6(4):446–452. doi: 10.1165/ajrcmb/6.4.446. [DOI] [PubMed] [Google Scholar]
  40. Kawakami M., Ihara I., Ihara S., Suzuki A., Fukui K. A group of bactericidal factors conserved by vertebrates for more than 300 million years. J Immunol. 1984 May;132(5):2578–2581. [PubMed] [Google Scholar]
  41. Kawasaki N., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from human serum. J Biochem. 1983 Sep;94(3):937–947. doi: 10.1093/oxfordjournals.jbchem.a134437. [DOI] [PubMed] [Google Scholar]
  42. Kawasaki T., Etoh R., Yamashina I. Isolation and characterization of a mannan-binding protein from rabbit liver. Biochem Biophys Res Commun. 1978 Apr 14;81(3):1018–1024. doi: 10.1016/0006-291x(78)91452-3. [DOI] [PubMed] [Google Scholar]
  43. Kilchherr E., Hofmann H., Steigemann W., Engel J. Structural model of the collagen-like region of C1q comprising the kink region and the fibre-like packing of the six triple helices. J Mol Biol. 1985 Nov 20;186(2):403–415. doi: 10.1016/0022-2836(85)90114-7. [DOI] [PubMed] [Google Scholar]
  44. Kilchherr E., Schumaker V. N., Phillips M. L., Curtiss L. K. Activation of the first component of human complement, C1, by monoclonal antibodies directed against different domains of subcomponent C1q. J Immunol. 1986 Jul 1;137(1):255–262. [PubMed] [Google Scholar]
  45. Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
  46. Kolb-Bachofen V. A review on the biological properties of C-reactive protein. Immunobiology. 1991 Sep;183(1-2):133–145. doi: 10.1016/S0171-2985(11)80193-2. [DOI] [PubMed] [Google Scholar]
  47. Korfhagen T. R., Glasser S. W., Bruno M. D., McMahan M. J., Whitsett J. A. A portion of the human surfactant protein A (SP-A) gene locus consists of a pseudogene. Am J Respir Cell Mol Biol. 1991 May;4(5):463–469. doi: 10.1165/ajrcmb/4.5.463. [DOI] [PubMed] [Google Scholar]
  48. Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986 Jan;77(1):1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Krejci E., Coussen F., Duval N., Chatel J. M., Legay C., Puype M., Vandekerckhove J., Cartaud J., Bon S., Massoulié J. Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 1991 May;10(5):1285–1293. doi: 10.1002/j.1460-2075.1991.tb08070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kuan S. F., Rust K., Crouch E. Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J Clin Invest. 1992 Jul;90(1):97–106. doi: 10.1172/JCI115861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kubak B. M., Potempa L. A., Anderson B., Mahklouf S., Venegas M., Gewurz H., Gewurz A. T. Evidence that serum amyloid P component binds to mannose-terminated sequences of polysaccharides and glycoproteins. Mol Immunol. 1988 Sep;25(9):851–858. doi: 10.1016/0161-5890(88)90121-6. [DOI] [PubMed] [Google Scholar]
  52. Kuhlman M., Joiner K., Ezekowitz R. A. The human mannose-binding protein functions as an opsonin. J Exp Med. 1989 May 1;169(5):1733–1745. doi: 10.1084/jem.169.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kölble K., Lu J., Mole S. E., Kaluz S., Reid K. B. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster. Genomics. 1993 Aug;17(2):294–298. doi: 10.1006/geno.1993.1324. [DOI] [PubMed] [Google Scholar]
  54. Köttgen E., Hell B., Kage A., Tauber R. Lectin specificity and binding characteristics of human C-reactive protein. J Immunol. 1992 Jul 15;149(2):445–453. [PubMed] [Google Scholar]
  55. Lachmann P. J., Müller-Eberhard H. J. The demonstration in human serum of "conglutinogen-activating factor" and its effect on the third component of complement. J Immunol. 1968 Apr;100(4):691–698. [PubMed] [Google Scholar]
  56. Lasky L. A., Singer M. S., Yednock T. A., Dowbenko D., Fennie C., Rodriguez H., Nguyen T., Stachel S., Rosen S. D. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell. 1989 Mar 24;56(6):1045–1055. doi: 10.1016/0092-8674(89)90637-5. [DOI] [PubMed] [Google Scholar]
  57. Lee Y. M., Leiby K. R., Allar J., Paris K., Lerch B., Okarma T. B. Primary structure of bovine conglutinin, a member of the C-type animal lectin family. J Biol Chem. 1991 Feb 15;266(5):2715–2723. [PubMed] [Google Scholar]
  58. Liao D. I., Kapadia G., Ahmed H., Vasta G. R., Herzberg O. Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1428–1432. doi: 10.1073/pnas.91.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lim B. L., Lu J., Reid K. B. Structural similarity between bovine conglutinin and bovine lung surfactant protein D and demonstration of liver as a site of synthesis of conglutinin. Immunology. 1993 Jan;78(1):159–165. [PMC free article] [PubMed] [Google Scholar]
  60. Lipscombe R. J., Sumiya M., Hill A. V., Lau Y. L., Levinsky R. J., Summerfield J. A., Turner M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet. 1992 Dec;1(9):709–715. doi: 10.1093/hmg/1.9.709. [DOI] [PubMed] [Google Scholar]
  61. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  62. Lu J., Day A. J., Sim R. B. Mannan-binding protein and the C-type carbohydrate recognition domain (CRD). Behring Inst Mitt. 1993 Dec;(93):25–30. [PubMed] [Google Scholar]
  63. Lu J., Willis A. C., Reid K. B. Purification, characterization and cDNA cloning of human lung surfactant protein D. Biochem J. 1992 Jun 15;284(Pt 3):795–802. doi: 10.1042/bj2840795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. MacPhee-Quigley K., Taylor P., Taylor S. Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH2-terminal and active center sequences. J Biol Chem. 1985 Oct 5;260(22):12185–12189. [PubMed] [Google Scholar]
  65. Malhotra R., Haurum J., Thiel S., Jensenius J. C., Sim R. B. Pollen grains bind to lung alveolar type II cells (A549) via lung surfactant protein A (SP-A). Biosci Rep. 1993 Apr;13(2):79–90. doi: 10.1007/BF01145960. [DOI] [PubMed] [Google Scholar]
  66. Malhotra R., Haurum J., Thiel S., Sim R. B. Interaction of C1q receptor with lung surfactant protein A. Eur J Immunol. 1992 Jun;22(6):1437–1445. doi: 10.1002/eji.1830220616. [DOI] [PubMed] [Google Scholar]
  67. Malhotra R., Thiel S., Reid K. B., Sim R. B. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med. 1990 Sep 1;172(3):955–959. doi: 10.1084/jem.172.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Malhotra R., Willis A. C., Jensenius J. C., Jackson J., Sim R. B. Structure and homology of human C1q receptor (collectin receptor). Immunology. 1993 Mar;78(3):341–348. [PMC free article] [PubMed] [Google Scholar]
  69. Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. McNeely T. B., Coonrod J. D. Comparison of the opsonic activity of human surfactant protein A for Staphylococcus aureus and Streptococcus pneumoniae with rabbit and human macrophages. J Infect Dis. 1993 Jan;167(1):91–97. doi: 10.1093/infdis/167.1.91. [DOI] [PubMed] [Google Scholar]
  71. Ng N. F., Hew C. L. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J Biol Chem. 1992 Aug 15;267(23):16069–16075. [PubMed] [Google Scholar]
  72. Ohta M., Okada M., Yamashina I., Kawasaki T. The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J Biol Chem. 1990 Feb 5;265(4):1980–1984. [PubMed] [Google Scholar]
  73. Quesenberry M. S., Drickamer K. Role of conserved and nonconserved residues in the Ca(2+)-dependent carbohydrate-recognition domain of a rat mannose-binding protein. Analysis by random cassette mutagenesis. J Biol Chem. 1992 May 25;267(15):10831–10841. [PubMed] [Google Scholar]
  74. Reid K. B. Proteins involved in the activation and control of the two pathways of human complement. Biochem Soc Trans. 1983 Jan;11(1):1–12. doi: 10.1042/bst0110001. [DOI] [PubMed] [Google Scholar]
  75. Rouquier S., Verdier J. M., Iovanna J., Dagorn J. C., Giorgi D. Rat pancreatic stone protein messenger RNA. Abundant expression in mature exocrine cells, regulation by food content, and sequence identity with the endocrine reg transcript. J Biol Chem. 1991 Jan 15;266(2):786–791. [PubMed] [Google Scholar]
  76. Rust K., Grosso L., Zhang V., Chang D., Persson A., Longmore W., Cai G. Z., Crouch E. Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain. Arch Biochem Biophys. 1991 Oct;290(1):116–126. doi: 10.1016/0003-9861(91)90597-c. [DOI] [PubMed] [Google Scholar]
  77. Sastry K., Herman G. A., Day L., Deignan E., Bruns G., Morton C. C., Ezekowitz R. A. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med. 1989 Oct 1;170(4):1175–1189. doi: 10.1084/jem.170.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sastry K., Zahedi K., Lelias J. M., Whitehead A. S., Ezekowitz R. A. Molecular characterization of the mouse mannose-binding proteins. The mannose-binding protein A but not C is an acute phase reactant. J Immunol. 1991 Jul 15;147(2):692–697. [PubMed] [Google Scholar]
  79. Sellar G. C., Blake D. J., Reid K. B. Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q. Biochem J. 1991 Mar 1;274(Pt 2):481–490. doi: 10.1042/bj2740481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Spiess M., Lodish H. F. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6465–6469. doi: 10.1073/pnas.82.19.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Strang C. J., Slayter H. S., Lachmann P. J., Davis A. E., 3rd Ultrastructure and composition of bovine conglutinin. Biochem J. 1986 Mar 1;234(2):381–389. doi: 10.1042/bj2340381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sumiya M., Super M., Tabona P., Levinsky R. J., Arai T., Turner M. W., Summerfield J. A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991 Jun 29;337(8757):1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
  83. Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
  84. Suter U., Bastos R., Hofstetter H. Molecular structure of the gene and the 5'-flanking region of the human lymphocyte immunoglobulin E receptor. Nucleic Acids Res. 1987 Sep 25;15(18):7295–7308. doi: 10.1093/nar/15.18.7295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Takada F., Takayama Y., Hatsuse H., Kawakami M. A new member of the C1s family of complement proteins found in a bactericidal factor, Ra-reactive factor, in human serum. Biochem Biophys Res Commun. 1993 Oct 29;196(2):1003–1009. doi: 10.1006/bbrc.1993.2349. [DOI] [PubMed] [Google Scholar]
  86. Takamatsu N., Ohba K., Kondo J., Kondo N., Shiba T. Hibernation-associated gene regulation of plasma proteins with a collagen-like domain in mammalian hibernators. Mol Cell Biol. 1993 Mar;13(3):1516–1521. doi: 10.1128/mcb.13.3.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Tanaka T., Har-el R., Tanzer M. L. Partial structure of the gene for chicken cartilage proteoglycan core protein. J Biol Chem. 1988 Oct 25;263(30):15831–15835. [PubMed] [Google Scholar]
  88. Taylor M. E., Brickell P. M., Craig R. K., Summerfield J. A. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J. 1989 Sep 15;262(3):763–771. doi: 10.1042/bj2620763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Taylor M. E., Conary J. T., Lennartz M. R., Stahl P. D., Drickamer K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem. 1990 Jul 25;265(21):12156–12162. [PubMed] [Google Scholar]
  90. Thiel S., Baatrup G., Friis-Christiansen P., Svehag S. E., Jensenius J. C. Characterization of a lectin in human plasma analogous to bovine conglutinin. Scand J Immunol. 1987 Nov;26(5):461–468. doi: 10.1111/j.1365-3083.1987.tb02279.x. [DOI] [PubMed] [Google Scholar]
  91. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  92. Traub W., Piez K. A. The chemistry and structure of collagen. Adv Protein Chem. 1971;25:243–352. doi: 10.1016/s0065-3233(08)60281-8. [DOI] [PubMed] [Google Scholar]
  93. Turner M. W. Deficiency of mannan binding protein--a new complement deficiency syndrome. Clin Exp Immunol. 1991 Oct;86 (Suppl 1):53–56. doi: 10.1111/j.1365-2249.1991.tb06208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Tyrrell D., James P., Rao N., Foxall C., Abbas S., Dasgupta F., Nashed M., Hasegawa A., Kiso M., Asa D. Structural requirements for the carbohydrate ligand of E-selectin. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10372–10376. doi: 10.1073/pnas.88.22.10372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Urade Y., Oberdick J., Molinar-Rode R., Morgan J. I. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1069–1073. doi: 10.1073/pnas.88.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Ushijima H., Schröder H. C., Poznanovic S., Gasić M. J., Matthes E., Müller W. E. Inhibition of human immunodeficiency virus-1 infection by human conglutinin-like protein: in vitro studies. Jpn J Cancer Res. 1992 May;83(5):458–464. doi: 10.1111/j.1349-7006.1992.tb01950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Vercelli D., Geha R. S. The IgE system. Ann Allergy. 1989 Jul;63(1):4–11. [PubMed] [Google Scholar]
  98. Von Hoegen I., Nakayama E., Parnes J. R. Identification of a human protein homologous to the mouse Lyb-2 B cell differentiation antigen and sequence of the corresponding cDNA. J Immunol. 1990 Jun 15;144(12):4870–4877. [PubMed] [Google Scholar]
  99. Wada M., Itoh N., Ohta M., Kawasaki T. Characterization of rat liver mannan-binding protein gene. J Biochem. 1992 Jan;111(1):66–73. doi: 10.1093/oxfordjournals.jbchem.a123720. [DOI] [PubMed] [Google Scholar]
  100. Weaver T. E., Whitsett J. A. Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J. 1991 Jan 15;273(Pt 2):249–264. doi: 10.1042/bj2730249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Weis W. I., Crichlow G. V., Murthy H. M., Hendrickson W. A., Drickamer K. Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J Biol Chem. 1991 Nov 5;266(31):20678–20686. [PubMed] [Google Scholar]
  102. Weis W. I., Kahn R., Fourme R., Drickamer K., Hendrickson W. A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science. 1991 Dec 13;254(5038):1608–1615. doi: 10.1126/science.1721241. [DOI] [PubMed] [Google Scholar]
  103. Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  104. Wong S., Freeman J. D., Kelleher C., Mager D., Takei F. Ly-49 multigene family. New members of a superfamily of type II membrane proteins with lectin-like domains. J Immunol. 1991 Aug 15;147(4):1417–1423. [PubMed] [Google Scholar]
  105. Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
  106. Yokoyama W. M., Jacobs L. B., Kanagawa O., Shevach E. M., Cohen D. I. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J Immunol. 1989 Aug 15;143(4):1379–1386. [PubMed] [Google Scholar]
  107. Yoshimatsu K., Ohya Y., Shikata Y., Seto T., Hasegawa Y., Tanaka I., Kawamura T., Kitoh K., Toyoshima S., Osawa T. Purification and cDNA cloning of a novel factor produced by a human T-cell hybridoma: sequence homology with animal lectins. Mol Immunol. 1992 Apr;29(4):537–546. doi: 10.1016/0161-5890(92)90012-m. [DOI] [PubMed] [Google Scholar]
  108. Zimmerman P. E., Voelker D. R., McCormack F. X., Paulsrud J. R., Martin W. J., 2nd 120-kD surface glycoprotein of Pneumocystis carinii is a ligand for surfactant protein A. J Clin Invest. 1992 Jan;89(1):143–149. doi: 10.1172/JCI115554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Zimmermann D. R., Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 1989 Oct;8(10):2975–2981. doi: 10.1002/j.1460-2075.1989.tb08447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. van Iwaarden J. F., van Strijp J. A., Ebskamp M. J., Welmers A. C., Verhoef J., van Golde L. M. Surfactant protein A is opsonin in phagocytosis of herpes simplex virus type 1 by rat alveolar macrophages. Am J Physiol. 1991 Aug;261(2 Pt 1):L204–L209. doi: 10.1152/ajplung.1991.261.2.L204. [DOI] [PubMed] [Google Scholar]
  111. van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES