Abstract
Saccharomyces yeast strains able to ferment maltose carry at least one member of a family of MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. The MAL6 locus has been cloned and shown to be a cluster of at least three transcribed regions, all of which are required for maltose fermentation. Transcription at two of these genes, MAL61 and MAL62, is both induced by maltose and repressed by glucose. The third gene, MAL63, appears to encode a regulatory product controlling maltose fermentation. In this report, we demonstrate that the MAL62 gene is the structural gene coding for the enzyme maltase. Strain 332-5A is a maltose fermenter of the genotype MAL6 mal1(0). Integrative disruption of the MAL62 gene of the MAL6 locus produces a strain which is still capable of fermenting maltose, but which synthesizes a more heat-labile form of maltase than the undisrupted strain. Synthesis of this more heat-labile maltase was shown to be linked to the mal1(0) locus present in the strain. Integrative disruption of both the MAL62 gene and the MAL62-homologous sequence present at the mal1(0) locus produces a nonfermenter which is unable to synthesize maltase. These results identify MAL62 as the maltase structural gene.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnett J. A. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976;32:125–234. doi: 10.1016/s0065-2318(08)60337-6. [DOI] [PubMed] [Google Scholar]
- Federoff H. J., Cohen J. D., Eccleshall T. R., Needleman R. B., Buchferer B. A., Giacalone J., Marmur J. Isolation of a maltase structural gene from Saccharomyces carlsbergensis. J Bacteriol. 1982 Mar;149(3):1064–1070. doi: 10.1128/jb.149.3.1064-1070.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan N. A., Eaton N. R. Purification and characterization of maltase and alpha-methyl glucosidase from yeast. Biochim Biophys Acta. 1967 Sep 12;146(1):173–180. doi: 10.1016/0005-2744(67)90084-8. [DOI] [PubMed] [Google Scholar]
- Lloyd J. B., Whelan W. J. An improved method for enzymic determination of glucose in the presence of maltose. Anal Biochem. 1969 Sep;30(3):467–470. doi: 10.1016/0003-2697(69)90143-2. [DOI] [PubMed] [Google Scholar]
- Michels C. A., Needleman R. B. The dispersed, repeated family of MAL loci in Saccharomyces spp. J Bacteriol. 1984 Mar;157(3):949–952. doi: 10.1128/jb.157.3.949-952.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman R. B., Federoff H. J., Eccleshall T. R., Buchferer B., Marmur J. Purification and characterization of an alpha-glucosidase from Saccharomyces carlsbergensis. Biochemistry. 1978 Oct 31;17(22):4657–4661. doi: 10.1021/bi00615a011. [DOI] [PubMed] [Google Scholar]
- Needleman R. B., Kaback D. B., Dubin R. A., Perkins E. L., Rosenberg N. G., Sutherland K. A., Forrest D. B., Michels C. A. MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation. Proc Natl Acad Sci U S A. 1984 May;81(9):2811–2815. doi: 10.1073/pnas.81.9.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman R. B., Michels C. Repeated family of genes controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol. 1983 May;3(5):796–802. doi: 10.1128/mcb.3.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng R., Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3912–3916. doi: 10.1073/pnas.77.7.3912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouwehand J., van Wijk R. Regulation of maltase and -methylglucosidase synthesis in genetically defined strains of Saccharomyces carlsbergensis. Mol Gen Genet. 1972;117(1):30–38. doi: 10.1007/BF00268834. [DOI] [PubMed] [Google Scholar]
- Petes T. D. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell. 1980 Mar;19(3):765–774. doi: 10.1016/s0092-8674(80)80052-3. [DOI] [PubMed] [Google Scholar]
- Rave N., Crkvenjakov R., Boedtker H. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. Nucleic Acids Res. 1979 Aug 10;6(11):3559–3567. doi: 10.1093/nar/6.11.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Wijk R., Ouwehand J., van den Bos T., Koningsberger V. V. Induction and catabolite repression of alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1969 Jul 22;186(1):178–191. doi: 10.1016/0005-2787(69)90501-2. [DOI] [PubMed] [Google Scholar]
- de Kroon R. A., Koningsberger V. V. An inducible transport system for alpha-glucosides in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1970 Apr 15;204(2):590–609. doi: 10.1016/0005-2787(70)90178-4. [DOI] [PubMed] [Google Scholar]
- ten Berge A. M., Zoutewelle G., van de Poll K. W. Regulation of maltose fermentation in Saccharomyces carlsbergensis. I. The function of the gene MAL6, as recognized by mal6-mutants. Mol Gen Genet. 1973 Jul 2;123(3):233–246. doi: 10.1007/BF00271242. [DOI] [PubMed] [Google Scholar]