Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Feb;4(2):275–285. doi: 10.1002/pro.5560040214

Neural networks for secondary structure and structural class predictions.

J M Chandonia 1, M Karplus 1
PMCID: PMC2143056  PMID: 7757016

Abstract

A pair of neural network-based algorithms is presented for predicting the tertiary structural class and the secondary structure of proteins. Each algorithm realizes improvements in accuracy based on information provided by the other. Structural class prediction of proteins nonhomologous to any in the training set is improved significantly, from 62.3% to 73.9%, and secondary structure prediction accuracy improves slightly, from 62.26% to 62.64%. A number of aspects of neural network optimization and testing are examined. They include network overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly depending on the particular proteins chosen for the training and test sets; consequently, an appropriate measure of accuracy reflects the more unbiased approach of "jackknife" cross-validation (testing each protein in the data-base individually).

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P. Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis. J Mol Biol. 1987 Sep 20;197(2):331–348. doi: 10.1016/0022-2836(87)90127-6. [DOI] [PubMed] [Google Scholar]
  2. Holley L. H., Karplus M. Neural networks for protein structure prediction. Methods Enzymol. 1991;202:204–224. doi: 10.1016/0076-6879(91)02012-x. [DOI] [PubMed] [Google Scholar]
  3. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  4. Kabsch W., Sander C. How good are predictions of protein secondary structure? FEBS Lett. 1983 May 8;155(2):179–182. doi: 10.1016/0014-5793(82)80597-8. [DOI] [PubMed] [Google Scholar]
  5. Kabsch W., Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1075–1078. doi: 10.1073/pnas.81.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klein P., Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986 Sep;25(9):1659–1672. doi: 10.1002/bip.360250909. [DOI] [PubMed] [Google Scholar]
  7. Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990 Jul 5;214(1):171–182. doi: 10.1016/0022-2836(90)90154-E. [DOI] [PubMed] [Google Scholar]
  8. Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
  9. Matthews B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975 Oct 20;405(2):442–451. doi: 10.1016/0005-2795(75)90109-9. [DOI] [PubMed] [Google Scholar]
  10. Muskal S. M., Kim S. H. Predicting protein secondary structure content. A tandem neural network approach. J Mol Biol. 1992 Jun 5;225(3):713–727. doi: 10.1016/0022-2836(92)90396-2. [DOI] [PubMed] [Google Scholar]
  11. Rooman M. J., Wodak S. J. Identification of predictive sequence motifs limited by protein structure data base size. Nature. 1988 Sep 1;335(6185):45–49. doi: 10.1038/335045a0. [DOI] [PubMed] [Google Scholar]
  12. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  13. Rost B., Sander C. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7558–7562. doi: 10.1073/pnas.90.16.7558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stolorz P., Lapedes A., Xia Y. Predicting protein secondary structure using neural net and statistical methods. J Mol Biol. 1992 May 20;225(2):363–377. doi: 10.1016/0022-2836(92)90927-c. [DOI] [PubMed] [Google Scholar]
  15. Taylor W. R., Thornton J. M. Recognition of super-secondary structure in proteins. J Mol Biol. 1984 Mar 15;173(4):487–512. [PubMed] [Google Scholar]
  16. Zhang C. T., Chou K. C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci. 1992 Mar;1(3):401–408. doi: 10.1002/pro.5560010312. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES