Abstract
A three-dimensional model of the photosystem II (PSII) reaction center from the cyanobacterium Synechocystis sp. PCC 6803 was generated based on homology with the anoxygenic purple bacterial photosynthetic reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis, for which the X-ray crystallographic structures are available. The model was constructed with an alignment of D1 and D2 sequences with the L and M subunits of the bacterial reaction center, respectively, and by using as a scaffold the structurally conserved regions (SCRs) from bacterial templates. The structurally variant regions were built using a novel sequence-specific approach of searching for the best-matched protein segments in the Protein Data Bank with the "basic local alignment search tool" (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990, J Mol Biol 215:403-410), and imposing the matching conformational preference on the corresponding D1 and D2 regions. The structure thus obtained was refined by energy minimization. The modeled D1 and D2 proteins contain five transmembrane alpha-helices each, with cofactors (4 chlorophylls, 2 pheophytins, 2 plastoquinones, and a non-heme iron) essential for PSII primary photochemistry embedded in them. A beta-carotene, considered important for PSII photoprotection, was also included in the model. Four different possible conformations of the primary electron donor P680 chlorophylls were proposed, one based on the homology with the bacterial template and the other three on existing experimental suggestions in literature. The P680 conformation based on homology was preferred because it has the lowest energy. Redox active tyrosine residues important for P680+ reduction as well as residues important for PSII cofactor binding were analyzed. Residues involved in interprotein interactions in the model were also identified. Herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modeled in the plastoquinone QB binding niche using the structural information available from a DCMU-binding bacterial reaction center. A bicarbonate anion, known to play a role in PSII, but not in anoxygenic photosynthetic bacteria, was modeled in the non-heme iron site, providing a bidentate ligand to the iron. By modifying the previous hypothesis of Blubaugh and Govindjee (1988, Photosyn Res 19:85-128), we modeled a second bicarbonate and a water molecule in the QB site and we proposed a hypothesis to explain the mechanism of QB protonation mediated by bicarbonate and water. The bicarbonate, stabilized by D1-R257, donates a proton to QB2- through the intermediate of D1-H252; and a water molecule donates another proton to QB2-. Based on the discovery of a "water transport channel" in the bacterial reaction center, an analogous channel for transporting water and bicarbonate is proposed in our PSII model. The putative channel appears to be primarily positively charged near QB and the non-heme iron, in contrast to the polarity distribution in the bacterial water transport channel. The constructed model has been found to be consistent with most existing data.
Full Text
The Full Text of this article is available as a PDF (9.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aime S., Fasano M., Paoletti S., Cutruzzolà F., Desideri A., Bolognesi M., Rizzi M., Ascenzi P. Structural determinants of fluoride and formate binding to hemoglobin and myoglobin: crystallographic and 1H-NMR relaxometric study. Biophys J. 1996 Jan;70(1):482–488. doi: 10.1016/S0006-3495(96)79593-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Boekema E. J., Hankamer B., Bald D., Kruip J., Nield J., Boonstra A. F., Barber J., Rögner M. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):175–179. doi: 10.1073/pnas.92.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowyer J., Hilton M., Whitelegge J., Jewess P., Camilleri P., Crofts A., Robinson H. Molecular modelling studies on the binding of phenylurea inhibitors to the D 1 protein of photosystem II. Z Naturforsch C. 1990 May;45(5):379–387. doi: 10.1515/znc-1990-0512. [DOI] [PubMed] [Google Scholar]
- Cao J. C., Vermaas W. F., Govindjee Arginine residues in the D2 polypeptide may stabilize bicarbonate binding in photosystem II of Synechocystis sp. PCC. Biochim Biophys Acta. 1991 Aug 23;1059(2):171–180. doi: 10.1016/s0005-2728(05)80202-6. [DOI] [PubMed] [Google Scholar]
- Chu H. A., Nguyen A. P., Debus R. J. Amino acid residues that influence the binding of manganese or calcium to photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. Biochemistry. 1995 May 2;34(17):5839–5858. doi: 10.1021/bi00017a016. [DOI] [PubMed] [Google Scholar]
- Clarke A. K., Soitamo A., Gustafsson P., Oquist G. Rapid interchange between two distinct forms of cyanobacterial photosystem II reaction-center protein D1 in response to photoinhibition. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9973–9977. doi: 10.1073/pnas.90.21.9973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debus R. J., Barry B. A., Babcock G. T., McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1988 Jan;85(2):427–430. doi: 10.1073/pnas.85.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
- Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
- Durrant J. R., Klug D. R., Kwa S. L., van Grondelle R., Porter G., Dekker J. P. A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4798–4802. doi: 10.1073/pnas.92.11.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ermler U., Fritzsch G., Buchanan S. K., Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure. 1994 Oct 15;2(10):925–936. doi: 10.1016/s0969-2126(94)00094-8. [DOI] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Gilchrist M. L., Jr, Ball J. A., Randall D. W., Britt R. D. Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9545–9549. doi: 10.1073/pnas.92.21.9545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giorgi L. B., Nixon P. J., Merry S. A., Joseph D. M., Durrant J. R., De Las Rivas J., Barber J., Porter G., Klug D. R. Comparison of primary charge separation in the photosystem II reaction center complex isolated from wild-type and D1-130 mutants of the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1996 Jan 26;271(4):2093–2101. doi: 10.1074/jbc.271.4.2093. [DOI] [PubMed] [Google Scholar]
- Gounaris K., Chapman D. J., Booth P., Crystall B., Giorgi L. B., Klug D. R., Porter G., Barber J. Comparison of the D1/D2/cytochrome b559 reaction centre complex of photosystem two isolated by two different methods. FEBS Lett. 1990 Jun 4;265(1-2):88–92. doi: 10.1016/0014-5793(90)80890-u. [DOI] [PubMed] [Google Scholar]
- Govindjee, Vernotte C., Peteri B., Astier C., Etienne A. L. Differential sensitivity of bicarbonate-reversible formate effects on herbicide-resistant mutants of Synechocystis 6714. FEBS Lett. 1990 Jul 16;267(2):273–276. doi: 10.1016/0014-5793(90)80943-d. [DOI] [PubMed] [Google Scholar]
- Han K. F., Baker D. Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5814–5818. doi: 10.1073/pnas.93.12.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He W. Z., Newell W. R., Haris P. I., Chapman D., Barber J. Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transform infrared spectroscopy. Biochemistry. 1991 May 7;30(18):4552–4559. doi: 10.1021/bi00232a027. [DOI] [PubMed] [Google Scholar]
- Hienerwadel R., Berthomieu C. Bicarbonate binding to the non-heme iron of photosystem II investigated by Fourier transform infrared difference spectroscopy and 13C-labeled bicarbonate. Biochemistry. 1995 Dec 19;34(50):16288–16297. doi: 10.1021/bi00050a008. [DOI] [PubMed] [Google Scholar]
- Kless H., Oren-Shamir M., Ohad I., Edelman M., Vermaas W. Protein modifications in the D2 protein of photosystem II affect properties of the QB/herbicide-binding environment. Z Naturforsch C. 1993 Mar-Apr;48(3-4):185–190. doi: 10.1515/znc-1993-3-413. [DOI] [PubMed] [Google Scholar]
- Klimov V. V., Allakhverdiev S. I., Feyziev YaM, Baranov S. V. Bicarbonate requirement for the donor side of photosystem II. FEBS Lett. 1995 Apr 24;363(3):251–255. doi: 10.1016/0014-5793(95)00327-6. [DOI] [PubMed] [Google Scholar]
- Koulougliotis D., Tang X. S., Diner B. A., Brudvig G. W. Spectroscopic evidence for the symmetric location of tyrosines D and Z in photosystem II. Biochemistry. 1995 Mar 7;34(9):2850–2856. doi: 10.1021/bi00009a015. [DOI] [PubMed] [Google Scholar]
- Kulkarni R. D., Golden S. S. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein. J Bacteriol. 1994 Feb;176(4):959–965. doi: 10.1128/jb.176.4.959-965.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leff J. A., Schwarz M. I. Drs leff and schwarz respond. West J Med. 1991 Mar;154(3):353–353. [PMC free article] [PubMed] [Google Scholar]
- Lorković Z. J., Schröder W. P., Pakrasi H. B., Irrgang K. D., Herrmann R. G., Oelmüller R. Molecular characterization of PsbW, a nuclear-encoded component of the photosystem II reaction center complex in spinach. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8930–8934. doi: 10.1073/pnas.92.19.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maenpaa P., Miranda T., Tyystjarvi E., Tyystjarvi T., Govindjee, Ducruet J. M., Etienne A. L., Kirilovsky D. A Mutation in the D-de Loop of D1 Modifies the Stability of the S2QA- and S2QB- States in Photosystem II. Plant Physiol. 1995 Jan;107(1):187–197. doi: 10.1104/pp.107.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metz J. G., Nixon P. J., Rögner M., Brudvig G. W., Diner B. A. Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry. 1989 Aug 22;28(17):6960–6969. doi: 10.1021/bi00443a028. [DOI] [PubMed] [Google Scholar]
- Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon P. J., Diner B. A. Analysis of water-oxidation mutants constructed in the cyanobacterium Synechocystis sp. PCC 6803. Biochem Soc Trans. 1994 May;22(2):338–343. doi: 10.1042/bst0220338. [DOI] [PubMed] [Google Scholar]
- Nixon P. J., Diner B. A. Aspartate 170 of the photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry. 1992 Jan 28;31(3):942–948. doi: 10.1021/bi00118a041. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Inoue Y., Satoh K. FT-IR studies on the triplet state of P680 in the photosystem II reaction center: triplet equilibrium within a chlorophyll dimer. Biochemistry. 1993 Jul 20;32(28):7186–7195. doi: 10.1021/bi00079a016. [DOI] [PubMed] [Google Scholar]
- Nugent J. H., Bratt P. J., Evans M. C., MacLachlan D. J., Rigby S. E., Ruffle S. V., Turconi S. Photosystem II electron transfer: the manganese complex to P680. Biochem Soc Trans. 1994 May;22(2):327–331. doi: 10.1042/bst0220327. [DOI] [PubMed] [Google Scholar]
- Roffey R. A., Kramer D. M., Govindjee, Sayre R. T. Lumenal side histidine mutations in the D1 protein of Photosystem II affect donor side electron transfer in Chlamydomonas reinhardtii. Biochim Biophys Acta. 1994 May 18;1185(3):257–270. doi: 10.1016/0005-2728(94)90240-2. [DOI] [PubMed] [Google Scholar]
- Santini C., Tidu V., Tognon G., Ghiretti Magaldi A., Bassi R. Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. Eur J Biochem. 1994 Apr 1;221(1):307–315. doi: 10.1111/j.1432-1033.1994.tb18742.x. [DOI] [PubMed] [Google Scholar]
- Sayre R. T., Andersson B., Bogorad L. The topology of a membrane protein: the orientation of the 32 kd Qb-binding chloroplast thylakoid membrane protein. Cell. 1986 Nov 21;47(4):601–608. doi: 10.1016/0092-8674(86)90624-0. [DOI] [PubMed] [Google Scholar]
- Semin B. K., Loviagina E. R., Aleksandrov AYu, Kaurov YuN, Novakova A. A. Effect of formate on Mössbauer parameters of the non-heme iron of PS II particles of cyanobacteria. FEBS Lett. 1990 Sep 17;270(1-2):184–186. doi: 10.1016/0014-5793(90)81263-n. [DOI] [PubMed] [Google Scholar]
- Shopes R. J., Blubaugh D. J., Wraight C. A., Govindjee Absence of a bicarbonate-depletion effect in electron transfer between quinones in chromatophores and reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta. 1989 Apr 17;974(1):114–118. doi: 10.1016/s0005-2728(89)80171-9. [DOI] [PubMed] [Google Scholar]
- Sinning I., Michel H., Mathis P., Rutherford A. W. Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance, and optical spectroscopy. Biochemistry. 1989 Jun 27;28(13):5544–5553. doi: 10.1021/bi00439a031. [DOI] [PubMed] [Google Scholar]
- Sobolev V., Edelman M. Modeling the quinone-B binding site of the photosystem-II reaction center using notions of complementarity and contact-surface between atoms. Proteins. 1995 Mar;21(3):214–225. doi: 10.1002/prot.340210304. [DOI] [PubMed] [Google Scholar]
- Svensson B., Vass I., Cedergren E., Styring S. Structure of donor side components in photosystem II predicted by computer modelling. EMBO J. 1990 Jul;9(7):2051–2059. doi: 10.1002/j.1460-2075.1990.tb07372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensson B., Vass I., Styring S. Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Z Naturforsch C. 1991 Sep-Oct;46(9-10):765–776. doi: 10.1515/znc-1991-9-1008. [DOI] [PubMed] [Google Scholar]
- Telfer A., Dhami S., Bishop S. M., Phillips D., Barber J. beta-Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry. 1994 Dec 6;33(48):14469–14474. doi: 10.1021/bi00252a013. [DOI] [PubMed] [Google Scholar]
- Vermass W. F., Rutherford A. W., Hansson O. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8477–8481. doi: 10.1073/pnas.85.22.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachtveitl J., Farchaus J. W., Das R., Lutz M., Robert B., Mattioli T. A. Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry. 1993 Nov 30;32(47):12875–12886. doi: 10.1021/bi00210a041. [DOI] [PubMed] [Google Scholar]
- Wraight C. A. Electron acceptors of bacterial photosynthetic reaction centers. II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim Biophys Acta. 1979 Nov 8;548(2):309–327. doi: 10.1016/0005-2728(79)90138-5. [DOI] [PubMed] [Google Scholar]