Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2037–2043. doi: 10.1002/pro.5560051010

A fast conformational search strategy for finding low energy structures of model proteins.

T C Beutler 1, K A Dill 1
PMCID: PMC2143263  PMID: 8897604

Abstract

We describe a new computer algorithm for finding low-energy conformations of proteins. It is a chain-growth method that uses a heuristic bias function to help assemble a hydrophobic core. We call it the Core-directed chain Growth method (CG). We test the CG method on several well-known literature examples of HP lattice model proteins [in which proteins are modeled as sequences of hydrophobic (H) and polar (P) monomers], ranging from 20-64 monomers in two dimensions, and up to 88-mers in three dimensions. Previous nonexhaustive methods--Monte Carlo, a Genetic Algorithm, Hydrophobic Zippers, and Contact Interactions--have been tried on these same model sequences. CG is substantially better at finding the global optima, and avoiding local optima, and it does so in comparable or shorter times. CG finds the global minimum energy of the longest HP lattice model chain for which the global optimum is known, a 3D 88-mer that has only been reachable before by the CHCC complete search method. CG has the potential advantage that it should have nonexponential scaling with chain length. We believe this is a promising method for conformational searching in protein folding algorithms.

Full Text

The Full Text of this article is available as a PDF (628.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Covell D. G. Lattice model simulations of polypeptide chain folding. J Mol Biol. 1994 Jan 21;235(3):1032–1043. doi: 10.1006/jmbi.1994.1055. [DOI] [PubMed] [Google Scholar]
  2. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
  4. Kuntz I. D., Crippen G. M., Kollman P. A., Kimelman D. Calculation of protein tertiary structure. J Mol Biol. 1976 Oct 5;106(4):983–994. doi: 10.1016/0022-2836(76)90347-8. [DOI] [PubMed] [Google Scholar]
  5. Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
  6. Meirovitch H. Scanning method as an unbiased simulation technique and its application to the study of self-attracting random walks. Phys Rev A Gen Phys. 1985 Dec;32(6):3699–3708. doi: 10.1103/physreva.32.3699. [DOI] [PubMed] [Google Scholar]
  7. Monge A., Friesner R. A., Honig B. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5027–5029. doi: 10.1073/pnas.91.11.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sippl M. J., Hendlich M., Lackner P. Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: development of strategies and construction of models for myoglobin, lysozyme, and thymosin beta 4. Protein Sci. 1992 May;1(5):625–640. doi: 10.1002/pro.5560010509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Solomon J. E., Liney D. Exploration of compact protein conformations using the guided replication Monte Carlo method. Biopolymers. 1995 Nov;36(5):579–597. doi: 10.1002/bip.360360504. [DOI] [PubMed] [Google Scholar]
  10. Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
  11. Srinivasan R., Rose G. D. LINUS: a hierarchic procedure to predict the fold of a protein. Proteins. 1995 Jun;22(2):81–99. doi: 10.1002/prot.340220202. [DOI] [PubMed] [Google Scholar]
  12. Sun S., Thomas P. D., Dill K. A. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Eng. 1995 Aug;8(8):769–778. doi: 10.1093/protein/8.8.769. [DOI] [PubMed] [Google Scholar]
  13. Toma L., Toma S. Contact interactions method: a new algorithm for protein folding simulations. Protein Sci. 1996 Jan;5(1):147–153. doi: 10.1002/pro.5560050118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Unger R., Moult J. Genetic algorithms for protein folding simulations. J Mol Biol. 1993 May 5;231(1):75–81. doi: 10.1006/jmbi.1993.1258. [DOI] [PubMed] [Google Scholar]
  15. Vajda S., Jafri M. S., Sezerman O. U., DeLisi C. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization. Biopolymers. 1993 Jan;33(1):173–192. doi: 10.1002/bip.360330117. [DOI] [PubMed] [Google Scholar]
  16. Wallqvist A., Ullner M. A simplified amino acid potential for use in structure predictions of proteins. Proteins. 1994 Mar;18(3):267–280. doi: 10.1002/prot.340180308. [DOI] [PubMed] [Google Scholar]
  17. Wilson C., Doniach S. A computer model to dynamically simulate protein folding: studies with crambin. Proteins. 1989;6(2):193–209. doi: 10.1002/prot.340060208. [DOI] [PubMed] [Google Scholar]
  18. Yue K., Dill K. A. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 1996 Feb;5(2):254–261. doi: 10.1002/pro.5560050209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yue K., Fiebig K. M., Thomas P. D., Chan H. S., Shakhnovich E. I., Dill K. A. A test of lattice protein folding algorithms. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):325–329. doi: 10.1073/pnas.92.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yue K, Dill KA. Sequence-structure relationships in proteins and copolymers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Sep;48(3):2267–2278. doi: 10.1103/physreve.48.2267. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES