Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Nov;164(2):882–886. doi: 10.1128/jb.164.2.882-886.1985

Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia.

C Vander Wauven, V Stalon
PMCID: PMC214334  PMID: 2865249

Abstract

Pseudomonas cepacia NCTC 10743 utilizes arginine as the sole source of carbon and nitrogen for growth. Arginine is degraded to glutamate via succinyl derivatives. The catabolic sequence in this pathway is L-arginine----N2-succinylarginine----N2-succinylornithine--- -N2-succinylglutamate semialdehyde----N2-succinylglutamate----glutamate + succinate. The formation of the enzymes responsible for arginine degradation is regulated not only by induction but also by both carbon and nitrogen catabolite repression.

Full text

PDF
883

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelal A. T. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. doi: 10.1146/annurev.mi.33.100179.001035. [DOI] [PubMed] [Google Scholar]
  2. Duggleby R. G., Sneddon M. K., Morrison J. F. Chorismate mutase-prephenate dehydratase from Escherichia coli: active sites of a bifunctional enzyme. Biochemistry. 1978 Apr 18;17(8):1548–1554. doi: 10.1021/bi00601a030. [DOI] [PubMed] [Google Scholar]
  3. Edmunds H. N., Barker H. A. Aerobic metabolism of L- -lysine in a Pseudomonas. Coenzyme A-dependent acetylation of L- -lysine. Arch Biochem Biophys. 1973 Jan;154(1):460–470. doi: 10.1016/0003-9861(73)90079-9. [DOI] [PubMed] [Google Scholar]
  4. Friedrich B., Friedrich C. G., Magasanik B. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes: control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J Bacteriol. 1978 Feb;133(2):686–691. doi: 10.1128/jb.133.2.686-691.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Früh H., Leisinger T. Properties and localization of N-acetylglutamate deacetylase from Pseudomonas aeruginosa. J Gen Microbiol. 1981 Jul;125(1):1–10. doi: 10.1099/00221287-125-1-1. [DOI] [PubMed] [Google Scholar]
  6. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet. 1984;193(3):437–444. doi: 10.1007/BF00382081. [DOI] [PubMed] [Google Scholar]
  7. Issaly I. M., Issaly A. S. Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. Eur J Biochem. 1974 Dec 2;49(3):485–495. doi: 10.1111/j.1432-1033.1974.tb03853.x. [DOI] [PubMed] [Google Scholar]
  8. Janssen D. B., Herst P. M., Joosten H. M., van der Drift C. Nitrogen control in Pseudomonas aeruginosa: a role for glutamine in the regulations of the synthesis of nadp-dependent glutamate dehydrogenase, urease and histidase. Arch Microbiol. 1981 Feb;128(4):398–402. doi: 10.1007/BF00405920. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Mercenier A., Simon J. P., Haas D., Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. doi: 10.1099/00221287-116-2-381. [DOI] [PubMed] [Google Scholar]
  11. Mercenier A., Simon J. P., Vander Wauven C., Haas D., Stalon V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol. 1980 Oct;144(1):159–163. doi: 10.1128/jb.144.1.159-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Micklus M. J., Stein I. M. The colorimetric determination of mono- and disubstituted guanidines. Anal Biochem. 1973 Aug;54(2):545–553. doi: 10.1016/0003-2697(73)90386-2. [DOI] [PubMed] [Google Scholar]
  13. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism. J Biol Chem. 1971 Aug 25;246(16):5053–5058. [PubMed] [Google Scholar]
  14. Morris D. R., Pardee A. B. Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem. 1966 Jul 10;241(13):3129–3135. [PubMed] [Google Scholar]
  15. Rothstein M. Intermediates of lysine dissimilation in the yeast, Hansenula saturnus. Arch Biochem Biophys. 1965 Aug;111(2):467–476. doi: 10.1016/0003-9861(65)90210-9. [DOI] [PubMed] [Google Scholar]
  16. Stalon V., Mercenier A. L-arginine utilization by Pseudomonas species. J Gen Microbiol. 1984 Jan;130(1):69–76. doi: 10.1099/00221287-130-1-69. [DOI] [PubMed] [Google Scholar]
  17. Stalon V., Ramos F., Piérard A., Wiame J. M. The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):91–97. doi: 10.1016/0005-2744(67)90115-5. [DOI] [PubMed] [Google Scholar]
  18. Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
  19. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. doi: 10.1128/jb.160.3.928-934.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voellmy R., Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. doi: 10.1128/jb.122.3.799-809.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yamada S., Itano H. Phenanthrenequinone as an analytical reagent for arginine and other monosubstituted guanidines. Biochim Biophys Acta. 1966 Dec 28;130(2):538–540. doi: 10.1016/0304-4165(66)90256-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES