Abstract
Models of ligand binding are often based on four assumptions: (1) steric fit: that binding is determined mainly by shape complementarity; (2) native binding: that ligands mainly bind to native states; (3) locality: that ligands perturb protein structures mainly at the binding site; and (4) continuity: that small changes in ligand or protein structure lead to small changes in binding affinity. Using a generalization of the 2D HP lattice model, we study ligand binding and explore these assumptions. We first validate the model by showing that it reproduces typical binding behaviors. We observe ligand-induced denaturation, ANS and heme-like binding, and "lock-and-key" and "induced-fit" specific binding behaviors characterized by Michaelis-Menten or more cooperative types of binding isotherms. We then explore cases where the model predicts violations of the standard assumptions. For example, very different binding modes can result from two ligands of identical shape. Ligands can sometimes bind highly denatured states more tightly than native states and yet have Michaelis-Menten isotherms. Even low-population binding to denatured states can cause changes in global stability, hydrogen-exchange rates, and thermal B-factors, contrary to expectations, but in agreement with experiments. We conclude that ligand binding, similar to protein folding, may be better described in terms of energy landscapes than in terms of simpler mass-action models.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K., Doyle M. L., Myers D., Daugherty M. A. Molecular code for cooperativity in hemoglobin. Science. 1992 Jan 3;255(5040):54–63. doi: 10.1126/science.1553532. [DOI] [PubMed] [Google Scholar]
- Alonso D. O., Dill K. A. Solvent denaturation and stabilization of globular proteins. Biochemistry. 1991 Jun 18;30(24):5974–5985. doi: 10.1021/bi00238a023. [DOI] [PubMed] [Google Scholar]
- Bai Y., Milne J. S., Mayne L., Englander S. W. Protein stability parameters measured by hydrogen exchange. Proteins. 1994 Sep;20(1):4–14. doi: 10.1002/prot.340200103. [DOI] [PubMed] [Google Scholar]
- Benjamin D. C., Williams D. C., Jr, Smith-Gill S. J., Rule G. S. Long-range changes in a protein antigen due to antigen-antibody interaction. Biochemistry. 1992 Oct 13;31(40):9539–9545. doi: 10.1021/bi00155a005. [DOI] [PubMed] [Google Scholar]
- Chan H. S., Dill K. A. Origins of structure in globular proteins. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6388–6392. doi: 10.1073/pnas.87.16.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Hilton B. D., Trudeau K., Woodward C. K. Hydrogen exchange rates in pancreatic trypsin inhibitor are not correlated to thermal stability in urea. Biochemistry. 1981 Aug 4;20(16):4697–4703. doi: 10.1021/bi00519a027. [DOI] [PubMed] [Google Scholar]
- Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
- Kossiakoff A. A. Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature. 1982 Apr 22;296(5859):713–721. doi: 10.1038/296713a0. [DOI] [PubMed] [Google Scholar]
- Kragelund B. B., Knudsen J., Poulsen F. M. Local perturbations by ligand binding of hydrogen deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein (ACBP). J Mol Biol. 1995 Jul 28;250(5):695–706. doi: 10.1006/jmbi.1995.0409. [DOI] [PubMed] [Google Scholar]
- Levitt M. Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein. Nature. 1981 Nov 26;294(5839):379–380. doi: 10.1038/294379a0. [DOI] [PubMed] [Google Scholar]
- Loh S. N., Prehoda K. E., Wang J., Markley J. L. Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry. 1993 Oct 19;32(41):11022–11028. doi: 10.1021/bi00092a011. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Meiering E. M., Bycroft M., Lubienski M. J., Fersht A. R. Structure and dynamics of barnase complexed with 3'-GMP studied by NMR spectroscopy. Biochemistry. 1993 Oct 19;32(41):10975–10987. doi: 10.1021/bi00092a006. [DOI] [PubMed] [Google Scholar]
- Miller D. W., Dill K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci. 1995 Sep;4(9):1860–1873. doi: 10.1002/pro.5560040921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton A., Matthews B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry. 1995 Jul 11;34(27):8576–8588. doi: 10.1021/bi00027a007. [DOI] [PubMed] [Google Scholar]
- Orban J., Alexander P., Bryan P. Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain. Biochemistry. 1994 May 17;33(19):5702–5710. doi: 10.1021/bi00185a006. [DOI] [PubMed] [Google Scholar]
- Paterson Y., Englander S. W., Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990 Aug 17;249(4970):755–759. doi: 10.1126/science.1697101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roder H., Wagner G., Wüthrich K. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature. Biochemistry. 1985 Dec 3;24(25):7396–7407. doi: 10.1021/bi00346a055. [DOI] [PubMed] [Google Scholar]
- Segal D. M., Harrington W. F. The tritium-hydrogen exchange of myosin and its proteolytic fragments. Biochemistry. 1967 Mar;6(3):768–787. doi: 10.1021/bi00855a018. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Kutyshenko V. P., Ebert B., Blanck J., Ptitsyn O. B. Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett. 1987 Nov 16;224(1):9–13. doi: 10.1016/0014-5793(87)80412-x. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Shi L., Palleros D. R., Fink A. L. Protein conformational changes induced by 1,1'-bis(4-anilino-5-naphthalenesulfonic acid): preferential binding to the molten globule of DnaK. Biochemistry. 1994 Jun 21;33(24):7536–7546. doi: 10.1021/bi00190a006. [DOI] [PubMed] [Google Scholar]
- Shoichet B. K., Stroud R. M., Santi D. V., Kuntz I. D., Perry K. M. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993 Mar 5;259(5100):1445–1450. doi: 10.1126/science.8451640. [DOI] [PubMed] [Google Scholar]
- Shortle D., Chan H. S., Dill K. A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1992 Feb;1(2):201–215. doi: 10.1002/pro.5560010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strynadka N. C., Eisenstein M., Katchalski-Katzir E., Shoichet B. K., Kuntz I. D., Abagyan R., Totrov M., Janin J., Cherfils J., Zimmerman F. Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nat Struct Biol. 1996 Mar;3(3):233–239. doi: 10.1038/nsb0396-233. [DOI] [PubMed] [Google Scholar]
- Thomas P. D., Dill K. A. Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 1993 Dec;2(12):2050–2065. doi: 10.1002/pro.5560021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werner M. H., Wemmer D. E. Identification of a protein-binding surface by differential amide hydrogen-exchange measurements. Application to Bowman-Birk serine-protease inhibitor. J Mol Biol. 1992 Jun 5;225(3):873–889. doi: 10.1016/0022-2836(92)90407-b. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Sjölin L. Hydrogen exchange in RNase A: neutron diffraction study. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1418–1422. doi: 10.1073/pnas.79.5.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward C. K., Hilton B. D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu Rev Biophys Bioeng. 1979;8:99–127. doi: 10.1146/annurev.bb.08.060179.000531. [DOI] [PubMed] [Google Scholar]
- Woodward C. K., Rosenberg A. Studies of hydrogen exchange in proteins. VI. Urea effects on ribonuclease exchange kinetics leading to a general model for hydrogen exchange from folded proteins. J Biol Chem. 1971 Jul 10;246(13):4114–4121. [PubMed] [Google Scholar]