Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):438–443. doi: 10.1002/pro.5560060221

The role of helix VIII in the lactose permease of Escherichia coli: II. Site-directed sulfhydryl modification.

S Frillingos 1, H R Kaback 1
PMCID: PMC2143636  PMID: 9041647

Abstract

Cys-scanning mutagenesis of putative transmembrane helix VIII in the lactose permease of Escherichia coli (Frillingos S. Ujwal ML, Sun J, Kaback HR, 1997, Protein Sci 6:431-437) indicates that, although helix VIII contains only one irreplaceable residue (Glu 269), one face is important for active lactose transport. In this study, the rate of inactivation of each N-ethylmaleimide (NEM)-sensitive mutant is examined in the absence or presence of beta, D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). Remarkably, the analogue affords protection against inactivation with mutants Val 264-->Cys, Gly 268-->Cys, and Asn 272-->Cys, and alkylation of these single-Cys mutants in right-side-out membrane vesicles with [14C]NEM is attenuated by TDG. In contrast, alkylation of Thr 265-->Cys, which borders the three residues that are protected by TDG, is enhanced markedly by the analogue. Furthermore, NEM-labeling in the presence of the impermeant thiol reagent methanethiosulfonate ethylsulfonate demonstrates that ligand enhances the accessibility of position 265 to solvent. Finally, no significant alteration in NEM reactivity is observed for mutant Gly 262-->Cys, Glu 269-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, or Ala 279-->Cys. The findings indicate that a portion of one face of helix VIII (Val 264, Gly 268, and Asn 272), which is in close proximity to Cys 148 (helix V), interacts with substrate, whereas another position bordering these residues (Thr 265) is altered by a ligand-induced conformational change.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 1992 Oct 9;258(5080):307–310. doi: 10.1126/science.1384130. [DOI] [PubMed] [Google Scholar]
  2. Carrasco N., Antes L. M., Poonian M. S., Kaback H. R. lac permease of Escherichia coli: histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry. 1986 Aug 12;25(16):4486–4488. doi: 10.1021/bi00364a004. [DOI] [PubMed] [Google Scholar]
  3. Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danho W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4672–4676. doi: 10.1073/pnas.81.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrasco N., Püttner I. B., Antes L. M., Lee J. A., Larigan J. D., Lolkema J. S., Roepe P. D., Kaback H. R. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry. 1989 Mar 21;28(6):2533–2539. doi: 10.1021/bi00432a028. [DOI] [PubMed] [Google Scholar]
  5. Consler T. G., Persson B. L., Jung H., Zen K. H., Jung K., Privé G. G., Verner G. E., Kaback H. R. Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6934–6938. doi: 10.1073/pnas.90.15.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franco P. J., Brooker R. J. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J Biol Chem. 1994 Mar 11;269(10):7379–7386. [PubMed] [Google Scholar]
  7. Frillingos S., Kaback H. R. Monoclonal antibody 4B1 alters the pKa of a carboxylic acid at position 325 (helix X) of the lactose permease of Escherichia coli. Biochemistry. 1996 Aug 6;35(31):10166–10171. doi: 10.1021/bi960995r. [DOI] [PubMed] [Google Scholar]
  8. Frillingos S., Ujwal M. L., Sun J., Kaback H. R. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis. Protein Sci. 1997 Feb;6(2):431–437. doi: 10.1002/pro.5560060220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jung H., Jung K., Kaback H. R. A conformational change in the lactose permease of Escherichia coli is induced by ligand binding or membrane potential. Protein Sci. 1994 Jul;3(7):1052–1057. doi: 10.1002/pro.5560030707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jung H., Jung K., Kaback H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 1. Site-directed mutagenesis studies. Biochemistry. 1994 Oct 11;33(40):12160–12165. doi: 10.1021/bi00206a019. [DOI] [PubMed] [Google Scholar]
  11. Jung K., Voss J., He M., Hubbell W. L., Kaback H. R. Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry. 1995 May 16;34(19):6272–6277. doi: 10.1021/bi00019a003. [DOI] [PubMed] [Google Scholar]
  12. Kaback H. R. Use of site-directed mutagenesis to study the mechanism of a membrane transport protein. Biochemistry. 1987 Apr 21;26(8):2071–2076. doi: 10.1021/bi00382a001. [DOI] [PubMed] [Google Scholar]
  13. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  14. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem. 1981 Nov 25;256(22):11804–11808. [PubMed] [Google Scholar]
  15. Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 1993 Jun;2(6):1024–1033. doi: 10.1002/pro.5560020615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Short S. A., Kaback H. R., Kohn L. D. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J Biol Chem. 1975 Jun 10;250(11):4291–4296. [PubMed] [Google Scholar]
  18. Stauffer D. A., Karlin A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry. 1994 Jun 7;33(22):6840–6849. doi: 10.1021/bi00188a013. [DOI] [PubMed] [Google Scholar]
  19. Sun J., Wu J., Carrasco N., Kaback H. R. Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry. 1996 Jan 23;35(3):990–998. doi: 10.1021/bi952166w. [DOI] [PubMed] [Google Scholar]
  20. Teather R. M., Bramhall J., Riede I., Wright J. K., Fürst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur J Biochem. 1980;108(1):223–231. doi: 10.1111/j.1432-1033.1980.tb04715.x. [DOI] [PubMed] [Google Scholar]
  21. Ujwal M. L., Sahin-Tóth M., Persson B., Kaback H. R. Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol. 1994 Jan-Mar;11(1):9–16. doi: 10.3109/09687689409161024. [DOI] [PubMed] [Google Scholar]
  22. Wu J., Frillingos S., Kaback H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed chemical labeling and fluorescence spectroscopy. Biochemistry. 1995 Jul 4;34(26):8257–8263. doi: 10.1021/bi00026a007. [DOI] [PubMed] [Google Scholar]
  23. Wu J., Kaback H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluorescence studies. Biochemistry. 1994 Oct 11;33(40):12166–12171. doi: 10.1021/bi00206a020. [DOI] [PubMed] [Google Scholar]
  24. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu J., Voss J., Hubbell W. L., Kaback H. R. Site-directed spin labeling and chemical crosslinking demonstrate that helix V is close to helices VII and VIII in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10123–10127. doi: 10.1073/pnas.93.19.10123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES