Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):450–458. doi: 10.1002/pro.5560060223

Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids.

O Bogin 1, M Peretz 1, Y Burstein 1
PMCID: PMC2143650  PMID: 9041649

Abstract

The active-site metal ion and the associated ligand amino acids in the NADP-linked, tetrameric enzyme Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized by atomic absorption spectroscopy analysis and site-directed mutagenesis. Our preliminary results indicating the presence of a catalytic zinc and the absence of a structural metal ion in TBADH (Peretz & Burstein. 1989. Biochemistry 28:6549-6555) were verified. To determine the role of the putative active-site zinc, we investigated whether exchanging the zinc for other metal ions would affect the structural and/or the enzymatic properties of the enzyme. Substituting various metal ions for zinc either enhanced or diminished enzymatic activity, as follows: Mn2+ (240%); Co2+ (130%); Cd2+ (20%); Cu2+ or V3+ (< 5%). Site-directed mutagenesis to replace any one of the three putative zinc ligands of TBADH, Cys 37, His 59, or Asp 150, with the non-chelating residue, alanine, abolished not only the metal-binding capacity of the enzyme but also its catalytic activity, without affecting the overall secondary structure of the enzyme. Replacing the three putative catalytic zinc ligands of TBADH with the respective chelating residues serine, glutamine, or cysteine damaged the zinc-binding capacity of the mutated enzyme and resulted in a loss of catalytic activity that was partially restored by adding excess zinc to the reaction. The results imply that the zinc atom in TBADH is catalytic rather than structural and verify the involvement of Cys 37, His 59, and Asp 150 of TBADH in zinc coordination.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson I., Maret W., Zeppezauer M., Brown R. D., 3rd, Koenig S. H. Metal ion substitution at the catalytic site of horse-liver alcohol dehydrogenase: results from solvent magnetic relaxation studies. 2. Binding of manganese(II) and competition with zinc(II) and cadmium(II) ions. Biochemistry. 1981 Jun 9;20(12):3433–3438. doi: 10.1021/bi00515a020. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S. Metal-free dialysis tubing. Methods Enzymol. 1988;158:13–14. doi: 10.1016/0076-6879(88)58043-6. [DOI] [PubMed] [Google Scholar]
  3. Boiwe T., Bränden C. I. X-ray investigation of the binding of 1,10-phenanthroline and imidazole to horse-liver alcohol dehydrogenase. Eur J Biochem. 1977 Jul 1;77(1):173–179. doi: 10.1111/j.1432-1033.1977.tb11655.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brown D. C., Collins K. D. Dihydroorotase from Escherichia coli. Substitution of Co(II) for the active site Zn(II). J Biol Chem. 1991 Jan 25;266(3):1597–1604. [PubMed] [Google Scholar]
  6. Brändén C. I., Eklund H., Nordström B., Boiwe T., Söderlund G., Zeppezauer E., Ohlsson I., Akeson A. Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2439–2442. doi: 10.1073/pnas.70.8.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danielsson O., Atrian S., Luque T., Hjelmqvist L., Gonzàlez-Duarte R., Jörnvall H. Fundamental molecular differences between alcohol dehydrogenase classes. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4980–4984. doi: 10.1073/pnas.91.11.4980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietrich H., Maret W., Wallén L., Zeppezauer M. Active-site-specific reconstituted cobalt(II) horse-liver alcohol dehydrogenase. Changes of the spectra of the substrate trans-4-(N,N-dimethylamino)-cinnamaldehyde and of the catalytic cobalt ion upon ternary complex formation with NADH and 1,4,5,6-tetrahydronicotinamide--adenine dinucleotide. Eur J Biochem. 1979 Oct;100(1):267–270. doi: 10.1111/j.1432-1033.1979.tb02057.x. [DOI] [PubMed] [Google Scholar]
  9. Drum D. E., Vallee B. L. Optical properties of catalytically active cobalt and cadmium liver alcohol dehydrogenases. Biochem Biophys Res Commun. 1970 Oct 9;41(1):33–39. doi: 10.1016/0006-291x(70)90464-x. [DOI] [PubMed] [Google Scholar]
  10. Dunn M. F., Dietrich H., MacGibbon A. K., Koerber S. C., Zeppezauer M. Investigation of intermediates and transition states in the catalytic mechanisms of active site substituted cobalt(II), nickel(II), zinc(II), and cadmium(II) horse liver alcohol dehydrogenase. Biochemistry. 1982 Jan 19;21(2):354–363. doi: 10.1021/bi00531a024. [DOI] [PubMed] [Google Scholar]
  11. Dunn M. F., Hutchison J. S. Roles of zinc ion and reduced coenzyme in the formation of a transient chemical intermediate during the equine liver alcohol dehydrogenase catalyzed reduction of an aromatic aldehyde. Biochemistry. 1973 Nov 20;12(24):4882–4892. doi: 10.1021/bi00748a012. [DOI] [PubMed] [Google Scholar]
  12. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Brändén C. I. The structure of horse liver alcohol dehydrogenase. FEBS Lett. 1974 Aug 25;44(2):200–204. doi: 10.1016/0014-5793(74)80725-8. [DOI] [PubMed] [Google Scholar]
  13. Gaut B. S., Clegg M. T. Molecular evolution of alcohol dehydrogenase 1 in members of the grass family. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2060–2064. doi: 10.1073/pnas.88.6.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haeggström J. Z., Wetterholm A., Medina J. F., Samuelsson B. Leukotriene A4 hydrolase: structural and functional properties of the active center. J Lipid Mediat. 1993 Mar-Apr;6(1-3):1–13. [PubMed] [Google Scholar]
  15. Holland D. R., Hausrath A. C., Juers D., Matthews B. W. Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci. 1995 Oct;4(10):1955–1965. doi: 10.1002/pro.5560041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holmquist B. Elimination of adventitious metals. Methods Enzymol. 1988;158:6–12. doi: 10.1016/0076-6879(88)58042-4. [DOI] [PubMed] [Google Scholar]
  17. Holmquist B., Vallee B. L. Metal-coordinating substrate analogs as inhibitors of metalloenzymes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6216–6220. doi: 10.1073/pnas.76.12.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hurley T. D., Bosron W. F., Stone C. L., Amzel L. M. Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. J Mol Biol. 1994 Jun 10;239(3):415–429. doi: 10.1006/jmbi.1994.1382. [DOI] [PubMed] [Google Scholar]
  19. Håkansson K., Wehnert A. Structure of cobalt carbonic anhydrase complexed with bicarbonate. J Mol Biol. 1992 Dec 20;228(4):1212–1218. doi: 10.1016/0022-2836(92)90327-g. [DOI] [PubMed] [Google Scholar]
  20. Hög J. O., Karlsson C., Eklund H., Shapiro R., Jörnvall H. Site-directed mutagenesis of mammalian alcohol and sorbitol dehydrogenases map functional differences within the enzyme family. Adv Exp Med Biol. 1993;328:439–450. doi: 10.1007/978-1-4615-2904-0_46. [DOI] [PubMed] [Google Scholar]
  21. Ismaiel A. A., Zhu C. X., Colby G. D., Chen J. S. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol. 1993 Aug;175(16):5097–5105. doi: 10.1128/jb.175.16.5097-5105.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jeloková J., Karlsson C., Estonius M., Jörnvall H., Hög J. O. Features of structural zinc in mammalian alcohol dehydrogenase. Site-directed mutagenesis of the zinc ligands. Eur J Biochem. 1994 Nov 1;225(3):1015–1019. doi: 10.1111/j.1432-1033.1994.1015b.x. [DOI] [PubMed] [Google Scholar]
  23. Jendrossek D., Steinbüchel A., Schlegel H. G. Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol. 1988 Nov;170(11):5248–5256. doi: 10.1128/jb.170.11.5248-5256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jörnvall H. Horse liver alcohol dehydrogenase. On the primary structures of the isoenzymes. Eur J Biochem. 1970 Sep;16(1):41–49. doi: 10.1111/j.1432-1033.1970.tb01050.x. [DOI] [PubMed] [Google Scholar]
  25. Karlsson C., Hög J. O. Zinc coordination in mammalian sorbitol dehydrogenase. Replacement of putative zinc ligands by site-directed mutagenesis. Eur J Biochem. 1993 Aug 15;216(1):103–107. doi: 10.1111/j.1432-1033.1993.tb18121.x. [DOI] [PubMed] [Google Scholar]
  26. Korkhin Y., Frolow F., Bogin O., Peretz M., Kalb A. J., Burstein Y. Crystalline alcohol dehydrogenases from the mesophilic bacterium Clostridium beijerinckii and the thermophilic bacterium Thermoanaerobium brockii: preparation, characterization and molecular symmetry. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):882–886. doi: 10.1107/S0907444996001461. [DOI] [PubMed] [Google Scholar]
  27. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Lamed R. J., Zeikus J. G. Novel NADP-linked alcohol--aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J. 1981 Apr 1;195(1):183–190. doi: 10.1042/bj1950183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maret W., Andersson I., Dietrich H., Schneider-Bernlöhr H., Einarsson R., Zeppezauer M. Site-specific substituted cobalt(II) horse liver alcohol dehydrogenases. Preparation and characterization in solution, crystalline and immobilized state. Eur J Biochem. 1979 Aug 1;98(2):501–512. doi: 10.1111/j.1432-1033.1979.tb13211.x. [DOI] [PubMed] [Google Scholar]
  31. Maret W., Dietrich H., Ruf H. H., Zeppezauer M. Active site-specific reconstituted copper(II) horse liver alcohol dehydrogenase: a biological model for type 1 Cu2+ and its changes upon ligand binding and conformational transitions. J Inorg Biochem. 1980 Jun;12(3):241–252. doi: 10.1016/s0162-0134(00)80205-6. [DOI] [PubMed] [Google Scholar]
  32. Morris R. G., Saliman G., Dunn M. F. Evidence that hydride transfer precedes proton transfer in the liver alcohol dehydrogenase catalyzed reduction of trans-4-(N,N-dimethylamino)cinnamaldehyde. Biochemistry. 1980 Feb 19;19(4):725–731. doi: 10.1021/bi00545a018. [DOI] [PubMed] [Google Scholar]
  33. Nagai A., Ohta D. Histidinol dehydrogenase loses its catalytic function through the mutation of His261-->Asn due to its inability to ligate the essential Zn. J Biochem. 1994 Jan;115(1):22–25. doi: 10.1093/oxfordjournals.jbchem.a124298. [DOI] [PubMed] [Google Scholar]
  34. Neale A. D., Scopes R. K., Kelly J. M., Wettenhall R. E. The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem. 1986 Jan 2;154(1):119–124. doi: 10.1111/j.1432-1033.1986.tb09366.x. [DOI] [PubMed] [Google Scholar]
  35. Peretz M., Bogin O., Keinan E., Burstein Y. Stereospecificity of hydrogen transfer by the NADP-linked alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Int J Pept Protein Res. 1993 Nov;42(5):490–495. doi: 10.1111/j.1399-3011.1993.tb00159.x. [DOI] [PubMed] [Google Scholar]
  36. Peretz M., Burstein Y. Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Biochemistry. 1989 Aug 8;28(16):6549–6555. doi: 10.1021/bi00442a004. [DOI] [PubMed] [Google Scholar]
  37. Peterson G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem. 1979 Dec;100(2):201–220. doi: 10.1016/0003-2697(79)90222-7. [DOI] [PubMed] [Google Scholar]
  38. Reid M. F., Fewson C. A. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol. 1994;20(1):13–56. doi: 10.3109/10408419409113545. [DOI] [PubMed] [Google Scholar]
  39. Sakoda H., Imanaka T. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH. J Bacteriol. 1992 Feb;174(4):1397–1402. doi: 10.1128/jb.174.4.1397-1402.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Samuelson J., Zhang W. W., Kumar A., Descoteaux S., Shen P. S., Bailey G. Primary structures of alcohol and aldehyde dehydrogenase genes of Entamoeba histolytica. Arch Med Res. 1992;23(2):31–33. [PubMed] [Google Scholar]
  41. Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
  42. Satre M. A., Zgombić-Knight M., Duester G. The complete structure of human class IV alcohol dehydrogenase (retinol dehydrogenase) determined from the ADH7 gene. J Biol Chem. 1994 Jun 3;269(22):15606–15612. [PubMed] [Google Scholar]
  43. Schwartz D., Endo T. Alcohol Dehydrogenase Polymorphism in Maize-simple and Compound Loci. Genetics. 1966 Apr;53(4):709–715. doi: 10.1093/genetics/53.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scopes R. K. An iron-activated alcohol dehydrogenase. FEBS Lett. 1983 Jun 13;156(2):303–306. doi: 10.1016/0014-5793(83)80517-1. [DOI] [PubMed] [Google Scholar]
  45. Shain D. H., Salvadore C., Denis C. L. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. Mol Gen Genet. 1992 Apr;232(3):479–488. doi: 10.1007/BF00266253. [DOI] [PubMed] [Google Scholar]
  46. Sun H. W., Plapp B. V. Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. J Mol Evol. 1992 Jun;34(6):522–535. doi: 10.1007/BF00160465. [DOI] [PubMed] [Google Scholar]
  47. Sytkowski A. J., Vallee B. L. Cadmium-109 as a probe of the metal binding sites in horse liver alcohol dehydrogenase. Biochemistry. 1979 Sep 18;18(19):4095–4099. doi: 10.1021/bi00586a006. [DOI] [PubMed] [Google Scholar]
  48. Sytkowski A. J., Vallee B. L. Cobalt exchange in horse liver alcohol dehydrogenase. Biochemistry. 1978 Jul 11;17(14):2850–2857. doi: 10.1021/bi00607a024. [DOI] [PubMed] [Google Scholar]
  49. VONWARTBURG J. P., BETHUNE J. L., VALLEE B. L. HUMAN LIVER--ALCOHOL DEHYDROGENASE. KINETIC AND PHYSICOCHEMICAL PROPERTIES. Biochemistry. 1964 Nov;3:1775–1782. doi: 10.1021/bi00899a033. [DOI] [PubMed] [Google Scholar]
  50. Vallee B. L., Auld D. S. Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2715–2718. doi: 10.1073/pnas.90.7.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Van Der Straeten D., Rodrigues Pousada R. A., Gielen J., Van Montagu M. Tomato alcohol dehydrogenase. Expression during fruit ripening and under hypoxic conditions. FEBS Lett. 1991 Dec 16;295(1-3):39–42. doi: 10.1016/0014-5793(91)81379-m. [DOI] [PubMed] [Google Scholar]
  52. Wagner F. W., Parés X., Holmquist B., Vallee B. L. Physical and enzymatic properties of a class III isozyme of human liver alcohol dehydrogenase: chi-ADH. Biochemistry. 1984 May 8;23(10):2193–2199. doi: 10.1021/bi00305a014. [DOI] [PubMed] [Google Scholar]
  53. Wales M. R., Fewson C. A. NADP-dependent alcohol dehydrogenases in bacteria and yeast: purification and partial characterization of the enzymes from Acinetobacter calcoaceticus and Saccharomyces cerevisiae. Microbiology. 1994 Jan;140(Pt 1):173–183. doi: 10.1099/13500872-140-1-173. [DOI] [PubMed] [Google Scholar]
  54. Williamson V. M., Paquin C. E. Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet. 1987 Sep;209(2):374–381. doi: 10.1007/BF00329668. [DOI] [PubMed] [Google Scholar]
  55. Yasunami M., Chen C. S., Yoshida A. A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7610–7614. doi: 10.1073/pnas.88.17.7610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhang Z., Djebli A., Shoham M., Frolow F., Peretz M., Burstein Y. Crystal parameters of an alcohol dehydrogenase from the extreme thermophile Thermoanaerobium brockii. J Mol Biol. 1993 Mar 5;230(1):353–355. doi: 10.1006/jmbi.1993.1149. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES