Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Feb;6(2):431–437. doi: 10.1002/pro.5560060220

The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.

S Frillingos 1, M L Ujwal 1, J Sun 1, H R Kaback 1
PMCID: PMC2143654  PMID: 9041646

Abstract

Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
  2. Bibi E., Stearns S. M., Kaback H. R. The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3180–3184. doi: 10.1073/pnas.89.8.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bibi E., Verner G., Chang C. Y., Kaback H. R. Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7271–7275. doi: 10.1073/pnas.88.16.7271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  5. Brooker R. J., Myster S. H., Wilson T. H. Characterization and sequencing of the lac Y54-41 "uncoupled" mutant of the lactose permease. J Biol Chem. 1989 May 15;264(14):8135–8140. [PubMed] [Google Scholar]
  6. Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danho W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4672–4676. doi: 10.1073/pnas.81.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Consler T. G., Tsolas O., Kaback H. R. Role of proline residues in the structure and function of a membrane transport protein. Biochemistry. 1991 Feb 5;30(5):1291–1298. doi: 10.1021/bi00219a019. [DOI] [PubMed] [Google Scholar]
  8. Dunten R. L., Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative helix XI in the lactose permease of Escherichia coli. Biochemistry. 1993 Nov 30;32(47):12644–12650. doi: 10.1021/bi00210a012. [DOI] [PubMed] [Google Scholar]
  9. Franco P. J., Brooker R. J. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J Biol Chem. 1994 Mar 11;269(10):7379–7386. [PubMed] [Google Scholar]
  10. Frillingos S., Kaback H. R. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli. Biochemistry. 1996 Apr 23;35(16):5333–5338. doi: 10.1021/bi953068d. [DOI] [PubMed] [Google Scholar]
  11. Frillingos S., Kaback H. R. Probing the conformation of the lactose permease of Escherichia coli by in situ site-directed sulfhydryl modification. Biochemistry. 1996 Apr 2;35(13):3950–3956. doi: 10.1021/bi952601m. [DOI] [PubMed] [Google Scholar]
  12. Frillingos S., Kaback H. R. The role of helix VIII in the lactose permease of Escherichia coli: II. Site-directed sulfhydryl modification. Protein Sci. 1997 Feb;6(2):438–443. doi: 10.1002/pro.5560060221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frillingos S., Sahin-Tóth M., Persson B., Kaback H. R. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli. Biochemistry. 1994 Jul 5;33(26):8074–8081. doi: 10.1021/bi00192a012. [DOI] [PubMed] [Google Scholar]
  14. He M. M., Sun J., Kaback H. R. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli. Biochemistry. 1996 Oct 1;35(39):12909–12914. doi: 10.1021/bi960876b. [DOI] [PubMed] [Google Scholar]
  15. He M. M., Voss J., Hubbell W. L., Kaback H. R. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry. 1995 Dec 5;34(48):15661–15666. doi: 10.1021/bi00048a009. [DOI] [PubMed] [Google Scholar]
  16. He M. M., Voss J., Hubbell W. L., Kaback H. R. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325). Biochemistry. 1995 Dec 5;34(48):15667–15670. doi: 10.1021/bi00048a010. [DOI] [PubMed] [Google Scholar]
  17. Henderson P. J. Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr. 1990 Aug;22(4):525–569. doi: 10.1007/BF00762961. [DOI] [PubMed] [Google Scholar]
  18. Hinkle P. C., Hinkle P. V., Kaback H. R. Information content of amino acid residues in putative helix VIII of the lac permease from Escherichia coli. Biochemistry. 1990 Dec 11;29(49):10989–10994. doi: 10.1021/bi00501a017. [DOI] [PubMed] [Google Scholar]
  19. Jessen-Marshall A. E., Paul N. J., Brooker R. J. The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem. 1995 Jul 7;270(27):16251–16257. doi: 10.1074/jbc.270.27.16251. [DOI] [PubMed] [Google Scholar]
  20. Jung H., Jung K., Kaback H. R. A conformational change in the lactose permease of Escherichia coli is induced by ligand binding or membrane potential. Protein Sci. 1994 Jul;3(7):1052–1057. doi: 10.1002/pro.5560030707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jung H., Jung K., Kaback H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 1. Site-directed mutagenesis studies. Biochemistry. 1994 Oct 11;33(40):12160–12165. doi: 10.1021/bi00206a019. [DOI] [PubMed] [Google Scholar]
  22. Jung K., Jung H., Colacurcio P., Kaback H. R. Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein. Biochemistry. 1995 Jan 24;34(3):1030–1039. doi: 10.1021/bi00003a038. [DOI] [PubMed] [Google Scholar]
  23. Jung K., Jung H., Kaback H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry. 1994 Apr 5;33(13):3980–3985. doi: 10.1021/bi00179a026. [DOI] [PubMed] [Google Scholar]
  24. Jung K., Jung H., Wu J., Privé G. G., Kaback H. R. Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry. 1993 Nov 23;32(46):12273–12278. doi: 10.1021/bi00097a001. [DOI] [PubMed] [Google Scholar]
  25. Jung K., Voss J., He M., Hubbell W. L., Kaback H. R. Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry. 1995 May 16;34(19):6272–6277. doi: 10.1021/bi00019a003. [DOI] [PubMed] [Google Scholar]
  26. Kaback H. R., Frillingos S., Jung H., Jung K., Privé G. G., Ujwal M. L., Weitzman C., Wu J., Zen K. The lactose permease meets Frankenstein. J Exp Biol. 1994 Nov;196:183–195. doi: 10.1242/jeb.196.1.183. [DOI] [PubMed] [Google Scholar]
  27. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  28. Lee J. I., Okazaki N., Tsuchiya T., Wilson T. H. Cloning and sequencing of the gene for the lactose carrier of Citrobacter freundii. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1882–1888. doi: 10.1006/bbrc.1994.2407. [DOI] [PubMed] [Google Scholar]
  29. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  30. McKenna E., Hardy D., Kaback H. R. Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11954–11958. doi: 10.1073/pnas.89.24.11954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McMorrow I., Chin D. T., Fiebig K., Pierce J. L., Wilson D. M., Reeve E. C., Wilson T. H. The lactose carrier of Klebsiella pneumoniae M5a1; the physiology of transport and the nucleotide sequence of the lacY gene. Biochim Biophys Acta. 1988 Nov 22;945(2):315–323. doi: 10.1016/0005-2736(88)90494-4. [DOI] [PubMed] [Google Scholar]
  32. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem. 1981 Nov 25;256(22):11804–11808. [PubMed] [Google Scholar]
  33. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  34. Sahin-Tóth M., Dunten R. L., Gonzalez A., Kaback H. R. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10547–10551. doi: 10.1073/pnas.89.21.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 1993 Jun;2(6):1024–1033. doi: 10.1002/pro.5560020615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sun J., Wu J., Carrasco N., Kaback H. R. Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry. 1996 Jan 23;35(3):990–998. doi: 10.1021/bi952166w. [DOI] [PubMed] [Google Scholar]
  38. Teather R. M., Bramhall J., Riede I., Wright J. K., Fürst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur J Biochem. 1980;108(1):223–231. doi: 10.1111/j.1432-1033.1980.tb04715.x. [DOI] [PubMed] [Google Scholar]
  39. Ujwal M. L., Sahin-Tóth M., Persson B., Kaback H. R. Role of glutamate-269 in the lactose permease of Escherichia coli. Mol Membr Biol. 1994 Jan-Mar;11(1):9–16. doi: 10.3109/09687689409161024. [DOI] [PubMed] [Google Scholar]
  40. Weitzman C., Consler T. G., Kaback H. R. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Protein Sci. 1995 Nov;4(11):2310–2318. doi: 10.1002/pro.5560041108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu J., Frillingos S., Kaback H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed chemical labeling and fluorescence spectroscopy. Biochemistry. 1995 Jul 4;34(26):8257–8263. doi: 10.1021/bi00026a007. [DOI] [PubMed] [Google Scholar]
  42. Wu J., Frillingos S., Voss J., Kaback H. R. Ligand-induced conformational changes in the lactose permease of Escherichia coli: evidence for two binding sites. Protein Sci. 1994 Dec;3(12):2294–2301. doi: 10.1002/pro.5560031214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES