Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Mar;6(3):598–608. doi: 10.1002/pro.5560060309

Monomeric variants of IL-8: effects of side chain substitutions and solution conditions upon dimer formation.

H B Lowman 1, W J Fairbrother 1, P H Slagle 1, R Kabakoff 1, J Liu 1, S Shire 1, C A Hébert 1
PMCID: PMC2143672  PMID: 9070442

Abstract

IL-8 dimers have been observed in NMR and X-ray structures of the protein. We have engineered IL-8 monomers by mutations of residues throughout the dimer interface, which introduce hindrance determinants to dimerization. These IL-8 variants are shown by NMR to have wild-type monomer folding, but by ultracentrifugation to have a range of dimerization constants from microM to mM, as compared with a dimerization constant of about 10 microM for wild-type IL-8, under physiological salt and temperature conditions. The monomeric variants of IL-8 bind the erythrocyte chemokine receptor DARC, as well as the neutrophil IL-8 receptors CXCR1 and CXCR2 with affinities similar to that of wild-type IL-8. In addition, the monomeric variants were shown to have agonist activity, with similar potency to wild-type, in both Ca(2+)-flux assays on CXCR1 and CXCR2 transfected cells, and in chemotaxis assays on neutrophils. Thus, these variants confirm that monomeric IL-8 is functionally equivalent to wild-type in vitro assays. We have also investigated the effects of various solution conditions upon IL-8 dimer formation using analytical ultracentrifugation. At salt concentrations, temperatures, and pH conditions lower than physiological, the dimerization affinity of IL-8 is greatly enhanced. This suggests that, under some conditions, IL-8 dimer formation may occur at concentrations of IL-8 considerably lower than 10 microM, with consequences in vivo that are yet to be determined.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Poljak R. J. Three-dimensional structure of immunoglobulins. Annu Rev Biochem. 1979;48:961–997. doi: 10.1146/annurev.bi.48.070179.004525. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M., Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992 Jul 27;307(1):97–101. doi: 10.1016/0014-5793(92)80909-z. [DOI] [PubMed] [Google Scholar]
  3. Baldwin E. T., Weber I. T., St Charles R., Xuan J. C., Appella E., Yamada M., Matsushima K., Edwards B. F., Clore G. M., Gronenborn A. M. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):502–506. doi: 10.1073/pnas.88.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burrows S. D., Doyle M. L., Murphy K. P., Franklin S. G., White J. R., Brooks I., McNulty D. E., Scott M. O., Knutson J. R., Porter D. Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry. 1994 Nov 1;33(43):12741–12745. doi: 10.1021/bi00209a002. [DOI] [PubMed] [Google Scholar]
  5. Chang C. N., Rey M., Bochner B., Heyneker H., Gray G. High-level secretion of human growth hormone by Escherichia coli. Gene. 1987;55(2-3):189–196. doi: 10.1016/0378-1119(87)90279-4. [DOI] [PubMed] [Google Scholar]
  6. Clark-Lewis I., Dewald B., Geiser T., Moser B., Baggiolini M. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3574–3577. doi: 10.1073/pnas.90.8.3574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark-Lewis I., Schumacher C., Baggiolini M., Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem. 1991 Dec 5;266(34):23128–23134. [PubMed] [Google Scholar]
  8. Clore G. M., Appella E., Yamada M., Matsushima K., Gronenborn A. M. Three-dimensional structure of interleukin 8 in solution. Biochemistry. 1990 Feb 20;29(7):1689–1696. doi: 10.1021/bi00459a004. [DOI] [PubMed] [Google Scholar]
  9. Clore G. M., Gronenborn A. M. Comparison of the solution nuclear magnetic resonance and crystal structures of interleukin-8. Possible implications for the mechanism of receptor binding. J Mol Biol. 1991 Feb 20;217(4):611–620. doi: 10.1016/0022-2836(91)90518-b. [DOI] [PubMed] [Google Scholar]
  10. Fairbrother W. J., Reilly D., Colby T. J., Hesselgesser J., Horuk R. The solution structure of melanoma growth stimulating activity. J Mol Biol. 1994 Sep 23;242(3):252–270. doi: 10.1006/jmbi.1994.1577. [DOI] [PubMed] [Google Scholar]
  11. Hesselgesser J., Chitnis C. E., Miller L. H., Yansura D. G., Simmons L. C., Fairbrother W. J., Kotts C., Wirth C., Gillece-Castro B. L., Horuk R. A mutant of melanoma growth stimulating activity does not activate neutrophils but blocks erythrocyte invasion by malaria. J Biol Chem. 1995 May 12;270(19):11472–11476. doi: 10.1074/jbc.270.19.11472. [DOI] [PubMed] [Google Scholar]
  12. Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
  13. Horuk R., Chitnis C. E., Darbonne W. C., Colby T. J., Rybicki A., Hadley T. J., Miller L. H. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science. 1993 Aug 27;261(5125):1182–1184. doi: 10.1126/science.7689250. [DOI] [PubMed] [Google Scholar]
  14. Hébert C. A., Luscinskas F. W., Kiely J. M., Luis E. A., Darbonne W. C., Bennett G. L., Liu C. C., Obin M. S., Gimbrone M. A., Jr, Baker J. B. Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J Immunol. 1990 Nov 1;145(9):3033–3040. [PubMed] [Google Scholar]
  15. Hébert C. A., Vitangcol R. V., Baker J. B. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 1991 Oct 5;266(28):18989–18994. [PubMed] [Google Scholar]
  16. Jones S., Thornton J. M. Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol. 1995;63(1):31–65. doi: 10.1016/0079-6107(94)00008-w. [DOI] [PubMed] [Google Scholar]
  17. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  18. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  19. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  20. Lee J., Horuk R., Rice G. C., Bennett G. L., Camerato T., Wood W. I. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem. 1992 Aug 15;267(23):16283–16287. [PubMed] [Google Scholar]
  21. Leong S. R., Lowman H. B., Liu J., Shire S., Deforge L. E., Gillece-Castro B. L., McDowell R., Hébert C. A. IL-8 single-chain homodimers and heterodimers: interactions with chemokine receptors CXCR1, CXCR2, and DARC. Protein Sci. 1997 Mar;6(3):609–617. doi: 10.1002/pro.5560060310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowman H. B., Slagle P. H., DeForge L. E., Wirth C. M., Gillece-Castro B. L., Bourell J. H., Fairbrother W. J. Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J Biol Chem. 1996 Jun 14;271(24):14344–14352. doi: 10.1074/jbc.271.24.14344. [DOI] [PubMed] [Google Scholar]
  23. Lusti-Narasimhan M., Chollet A., Power C. A., Allet B., Proudfoot A. E., Wells T. N. A molecular switch of chemokine receptor selectivity. Chemical modification of the interleukin-8 Leu25 --> Cys mutant. J Biol Chem. 1996 Feb 9;271(6):3148–3153. doi: 10.1074/jbc.271.6.3148. [DOI] [PubMed] [Google Scholar]
  24. Naccache P. H., Therrien S., Caon A. C., Liao N., Gilbert C., McColl S. R. Chemoattractant-induced cytoplasmic pH changes and cytoskeletal reorganization in human neutrophils. Relationship to the stimulated calcium transients and oxidative burst. J Immunol. 1989 Apr 1;142(7):2438–2444. [PubMed] [Google Scholar]
  25. Pakula A. A., Young V. B., Sauer R. T. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8829–8833. doi: 10.1073/pnas.83.23.8829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paolini J. F., Willard D., Consler T., Luther M., Krangel M. S. The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations. J Immunol. 1994 Sep 15;153(6):2704–2717. [PubMed] [Google Scholar]
  27. Rajarathnam K., Clark-Lewis I., Sykes B. D. 1H NMR solution structure of an active monomeric interleukin-8. Biochemistry. 1995 Oct 10;34(40):12983–12990. doi: 10.1021/bi00040a008. [DOI] [PubMed] [Google Scholar]
  28. Rajarathnam K., Sykes B. D., Kay C. M., Dewald B., Geiser T., Baggiolini M., Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science. 1994 Apr 1;264(5155):90–92. doi: 10.1126/science.8140420. [DOI] [PubMed] [Google Scholar]
  29. Rot A., Hub E., Middleton J., Pons F., Rabeck C., Thierer K., Wintle J., Wolff B., Zsak M., Dukor P. Some aspects of IL-8 pathophysiology. III: Chemokine interaction with endothelial cells. J Leukoc Biol. 1996 Jan;59(1):39–44. doi: 10.1002/jlb.59.1.39. [DOI] [PubMed] [Google Scholar]
  30. Schraufstätter I. U., Ma M., Oades Z. G., Barritt D. S., Cochrane C. G. The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem. 1995 May 5;270(18):10428–10431. doi: 10.1074/jbc.270.18.10428. [DOI] [PubMed] [Google Scholar]
  31. Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Webb L. M., Ehrengruber M. U., Clark-Lewis I., Baggiolini M., Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7158–7162. doi: 10.1073/pnas.90.15.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES