Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jul;6(7):1503–1510. doi: 10.1002/pro.5560060714

Binding of monoclonal antibody 4B1 to homologs of the lactose permease of Escherichia coli.

J Sun 1, S Frillingos 1, H R Kaback 1
PMCID: PMC2143751  PMID: 9232651

Abstract

The conformationally sensitive epitope for monoclonal antibody (mAb) 4B1, which uncouples lactose from H+ translocation in the lactose permease of Escherichia coli, is localized in the periplasmic loop between helices VII and VIII (loop VII/VIII) on one face of a short helical segment (Sun J, et al., 1996, Biochemistry 35;990-998). Comparison of sequences in the region corresponding to loop VII/VIII in members of Cluster 5 of the Major Facilitator Superfamily (MFS), which includes five homologous oligosaccharide/H+ symporters, reveals interesting variations. 4B1 binds to the Citrobacter freundii lactose permease or E. coli raffinose permease with resultant inhibition of transport activity. Because E. coli raffinose permease contains a Pro residue at position 254 rather than Gly, it is unlikely that the mAb recognizes the peptide backbone at this position. Consistently, E. coli lactose permease with Pro in place of Gly254 also binds 4B1. In contrast, 4B1 binding is not observed with either Klebsiella pneumoniae lactose permease or E. coli sucrose permease. When the epitope is transferred from E. coli lactose permease (residues 245-259) to the sucrose permease, the modified protein binds 4B1, but the mAb has no significant effect on sucrose transport. The studies provide further evidence that the 4B1 epitope is restricted to loop VII/VIII, and that 4B1 binding induces a highly specific conformational change that uncouples substrate and H+ translocation.

Full Text

The Full Text of this article is available as a PDF (688.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslanidis C., Schmitt R. Regulatory elements of the raffinose operon: nucleotide sequences of operator and repressor genes. J Bacteriol. 1990 Apr;172(4):2178–2180. doi: 10.1128/jb.172.4.2178-2180.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danho W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4672–4676. doi: 10.1073/pnas.81.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrasco N., Viitanen P., Herzlinger D., Kaback H. R. Monoclonal antibodies against the lac carrier protein from Escherichia coli. 1. Functional studies. Biochemistry. 1984 Jul 31;23(16):3681–3687. doi: 10.1021/bi00311a017. [DOI] [PubMed] [Google Scholar]
  4. Dunten R. L., Sahin-Tóth M., Kaback H. R. Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. Biochemistry. 1993 Mar 30;32(12):3139–3145. doi: 10.1021/bi00063a028. [DOI] [PubMed] [Google Scholar]
  5. Frillingos S., Kaback H. R. Chemical rescue of Asp237-->Ala and Lys358-->Ala mutants in the lactose permease of Escherichia coli. Biochemistry. 1996 Oct 15;35(41):13363–13367. doi: 10.1021/bi961453c. [DOI] [PubMed] [Google Scholar]
  6. Frillingos S., Sahin-Tóth M., Lengeler J. W., Kaback H. R. Helix packing in the sucrose permease of Escherichia coli: properties of engineered charge pairs between helices VII and XI. Biochemistry. 1995 Jul 25;34(29):9368–9373. doi: 10.1021/bi00029a012. [DOI] [PubMed] [Google Scholar]
  7. Frillingos S., Sahin-Tóth M., Persson B., Kaback H. R. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli. Biochemistry. 1994 Jul 5;33(26):8074–8081. doi: 10.1021/bi00192a012. [DOI] [PubMed] [Google Scholar]
  8. He M. M., Voss J., Hubbell W. L., Kaback H. R. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry. 1995 Dec 5;34(48):15661–15666. doi: 10.1021/bi00048a009. [DOI] [PubMed] [Google Scholar]
  9. Herzlinger D., Viitanen P., Carrasco N., Kaback H. R. Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry. 1984 Jul 31;23(16):3688–3693. doi: 10.1021/bi00311a018. [DOI] [PubMed] [Google Scholar]
  10. Jung K., Jung H., Wu J., Privé G. G., Kaback H. R. Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry. 1993 Nov 23;32(46):12273–12278. doi: 10.1021/bi00097a001. [DOI] [PubMed] [Google Scholar]
  11. Jung K., Voss J., He M., Hubbell W. L., Kaback H. R. Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry. 1995 May 16;34(19):6272–6277. doi: 10.1021/bi00019a003. [DOI] [PubMed] [Google Scholar]
  12. Kaback H. R. Molecular biology of active transport: from membrane to molecule to mechanism. Harvey Lect. 1987;83:77–105. [PubMed] [Google Scholar]
  13. Kaback H. R. Transport in isolated bacterial membrane vesicles. Methods Enzymol. 1974;31:698–709. doi: 10.1016/0076-6879(74)31075-0. [DOI] [PubMed] [Google Scholar]
  14. King S. C., Hansen C. L., Wilson T. H. The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta. 1991 Feb 25;1062(2):177–186. doi: 10.1016/0005-2736(91)90390-t. [DOI] [PubMed] [Google Scholar]
  15. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  16. Lee J. I., Hwang P. P., Hansen C., Wilson T. H. Possible salt bridges between transmembrane alpha-helices of the lactose carrier of Escherichia coli. J Biol Chem. 1992 Oct 15;267(29):20758–20764. [PubMed] [Google Scholar]
  17. Lee J. I., Okazaki N., Tsuchiya T., Wilson T. H. Cloning and sequencing of the gene for the lactose carrier of Citrobacter freundii. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1882–1888. doi: 10.1006/bbrc.1994.2407. [DOI] [PubMed] [Google Scholar]
  18. McMorrow I., Chin D. T., Fiebig K., Pierce J. L., Wilson D. M., Reeve E. C., Wilson T. H. The lactose carrier of Klebsiella pneumoniae M5a1; the physiology of transport and the nucleotide sequence of the lacY gene. Biochim Biophys Acta. 1988 Nov 22;945(2):315–323. doi: 10.1016/0005-2736(88)90494-4. [DOI] [PubMed] [Google Scholar]
  19. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem. 1981 Nov 25;256(22):11804–11808. [PubMed] [Google Scholar]
  20. Okazaki N., Tsuda M., Wilson T. H., Tsuchiya T. Characterization of the lactose transport system in Citrobacter freundii. Biol Pharm Bull. 1994 Jun;17(6):794–797. doi: 10.1248/bpb.17.794. [DOI] [PubMed] [Google Scholar]
  21. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  22. Sahin-Tóth M., Dunten R. L., Gonzalez A., Kaback H. R. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10547–10551. doi: 10.1073/pnas.89.21.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sahin-Tóth M., Frillingos S., Lengeler J. W., Kaback H. R. Active transport by the CscB permease in Escherichia coli K-12. Biochem Biophys Res Commun. 1995 Mar 28;208(3):1116–1123. doi: 10.1006/bbrc.1995.1449. [DOI] [PubMed] [Google Scholar]
  24. Sahin-Tóth M., Kaback H. R. Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry. 1993 Sep 28;32(38):10027–10035. doi: 10.1021/bi00089a019. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Short S. A., Kaback H. R., Kohn L. D. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J Biol Chem. 1975 Jun 10;250(11):4291–4296. [PubMed] [Google Scholar]
  27. Sun J., Li J., Carrasco N., Kaback H. R. The last two cytoplasmic loops in the lactose permease of Escherichia coli comprise a discontinuous epitope for a monoclonal antibody. Biochemistry. 1997 Jan 7;36(1):274–280. doi: 10.1021/bi962292f. [DOI] [PubMed] [Google Scholar]
  28. Sun J., Wu J., Carrasco N., Kaback H. R. Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry. 1996 Jan 23;35(3):990–998. doi: 10.1021/bi952166w. [DOI] [PubMed] [Google Scholar]
  29. Teather R. M., Bramhall J., Riede I., Wright J. K., Fürst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur J Biochem. 1980;108(1):223–231. doi: 10.1111/j.1432-1033.1980.tb04715.x. [DOI] [PubMed] [Google Scholar]
  30. Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
  31. Wu J., Kaback H. R. A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14498–14502. doi: 10.1073/pnas.93.25.14498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu J., Voss J., Hubbell W. L., Kaback H. R. Site-directed spin labeling and chemical crosslinking demonstrate that helix V is close to helices VII and VIII in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10123–10127. doi: 10.1073/pnas.93.19.10123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES