Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2413–2420. doi: 10.1002/pro.5560071119

Prediction by a neural network of outer membrane beta-strand protein topology.

K Diederichs 1, J Freigang 1, S Umhau 1, K Zeth 1, J Breed 1
PMCID: PMC2143870  PMID: 9828008

Abstract

An artificial neural network (NN) was trained to predict the topology of bacterial outer membrane (OM) beta-strand proteins. Specifically, the NN predicts the z-coordinate of Calpha atoms in a coordinate frame with the outer membrane in the xy-plane, such that low z-values indicate periplasmic turns, medium z-values indicate transmembrane beta-strands, and high z-values indicate extracellular loops. To obtain a training set, seven OM proteins (porins) with structures known to high resolution were aligned with their pores along the z-axis. The relationship between Calpha z-values and topology was thereby established. To predict the topology of other OM proteins, all seven porins were used for the training set. Z-values (topologies) were predicted for two porins with hitherto unknown structure and for OM proteins not belonging to the porin family, all with insignificant sequence homology to the training set. The results of topology prediction compare favorably with experimental topology data.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chandonia J. M., Karplus M. The importance of larger data sets for protein secondary structure prediction with neural networks. Protein Sci. 1996 Apr;5(4):768–774. doi: 10.1002/pro.5560050422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen R., Schmidmayr W., Krämer C., Chen-Schmeisser U., Henning U. Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4592–4596. doi: 10.1073/pnas.77.8.4592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cowan S. W., Rosenbusch J. P. Folding pattern diversity of integral membrane proteins. Science. 1994 May 13;264(5161):914–916. doi: 10.1126/science.8178151. [DOI] [PubMed] [Google Scholar]
  4. Diederichs K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins. 1995 Oct;23(2):187–195. doi: 10.1002/prot.340230208. [DOI] [PubMed] [Google Scholar]
  5. Dubchak I., Holbrook S. R., Kim S. H. Prediction of protein folding class from amino acid composition. Proteins. 1993 May;16(1):79–91. doi: 10.1002/prot.340160109. [DOI] [PubMed] [Google Scholar]
  6. Efron B., Tibshirani R. Statistical data analysis in the computer age. Science. 1991 Jul 26;253(5018):390–395. doi: 10.1126/science.253.5018.390. [DOI] [PubMed] [Google Scholar]
  7. Ehrmann M., Bolek P., Mondigler M., Boyd D., Lange R. TnTIN and TnTAP: mini-transposons for site-specific proteolysis in vivo. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13111–13115. doi: 10.1073/pnas.94.24.13111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson A. D., Breed J., Diederichs K., Welte W., Coulton J. W. An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Protein Sci. 1998 Jul;7(7):1636–1638. doi: 10.1002/pro.5560070719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freudl R. Insertion of peptides into cell-surface-exposed areas of the Escherichia coli OmpA protein does not interfere with export and membrane assembly. Gene. 1989 Oct 30;82(2):229–236. doi: 10.1016/0378-1119(89)90048-6. [DOI] [PubMed] [Google Scholar]
  10. Freudl R., MacIntyre S., Degen M., Henning U. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol. 1986 Apr 5;188(3):491–494. doi: 10.1016/0022-2836(86)90171-3. [DOI] [PubMed] [Google Scholar]
  11. Georgiou G., Stephens D. L., Stathopoulos C., Poetschke H. L., Mendenhall J., Earhart C. F. Display of beta-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'-beta-lactamase fusions. Protein Eng. 1996 Feb;9(2):239–247. doi: 10.1093/protein/9.2.239. [DOI] [PubMed] [Google Scholar]
  12. Geourjon C., Deléage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 1994 Feb;7(2):157–164. doi: 10.1093/protein/7.2.157. [DOI] [PubMed] [Google Scholar]
  13. Gerbl-Rieger S., Engelhardt H., Peters J., Kehl M., Lottspeich F., Baumeister W. Topology of the anion-selective porin Omp32 from Comamonas acidovorans. J Struct Biol. 1992 Jan-Feb;108(1):14–24. doi: 10.1016/1047-8477(92)90003-s. [DOI] [PubMed] [Google Scholar]
  14. Gromiha M. M., Majumdar R., Ponnuswamy P. K. Identification of membrane spanning beta strands in bacterial porins. Protein Eng. 1997 May;10(5):497–500. doi: 10.1093/protein/10.5.497. [DOI] [PubMed] [Google Scholar]
  15. Hirsch A., Breed J., Saxena K., Richter O. M., Ludwig B., Diederichs K., Welte W. The structure of porin from Paracoccus denitrificans at 3.1 A resolution. FEBS Lett. 1997 Mar 10;404(2-3):208–210. doi: 10.1016/s0014-5793(97)00131-2. [DOI] [PubMed] [Google Scholar]
  16. Hirst J. D., Sternberg M. J. Prediction of ATP/GTP-binding motif: a comparison of a perceptron type neural network and a consensus sequence method [corrected]. Protein Eng. 1991 Aug;4(6):615–623. doi: 10.1093/protein/4.6.615. [DOI] [PubMed] [Google Scholar]
  17. Holley L. H., Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A. 1989 Jan;86(1):152–156. doi: 10.1073/pnas.86.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones D. T. Progress in protein structure prediction. Curr Opin Struct Biol. 1997 Jun;7(3):377–387. doi: 10.1016/s0959-440x(97)80055-3. [DOI] [PubMed] [Google Scholar]
  19. Jähnig F. Structure predictions of membrane proteins are not that bad. Trends Biochem Sci. 1990 Mar;15(3):93–95. doi: 10.1016/0968-0004(90)90188-h. [DOI] [PubMed] [Google Scholar]
  20. Klug C. S., Su W., Feix J. B. Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Biochemistry. 1997 Oct 21;36(42):13027–13033. doi: 10.1021/bi971232m. [DOI] [PubMed] [Google Scholar]
  21. Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990 Jul 5;214(1):171–182. doi: 10.1016/0022-2836(90)90154-E. [DOI] [PubMed] [Google Scholar]
  22. Koebnik R., Braun V. Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1993 Feb;175(3):826–839. doi: 10.1128/jb.175.3.826-839.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koebnik R. In vivo membrane assembly of split variants of the E.coli outer membrane protein OmpA. EMBO J. 1996 Jul 15;15(14):3529–3537. [PMC free article] [PubMed] [Google Scholar]
  24. Koebnik R., Krämer L. Membrane assembly of circularly permuted variants of the E. coli outer membrane protein OmpA. J Mol Biol. 1995 Jul 28;250(5):617–626. doi: 10.1006/jmbi.1995.0403. [DOI] [PubMed] [Google Scholar]
  25. Liu J., Rutz J. M., Klebba P. E., Feix J. B. A site-directed spin-labeling study of ligand-induced conformational change in the ferric enterobactin receptor, FepA. Biochemistry. 1994 Nov 15;33(45):13274–13283. doi: 10.1021/bi00249a014. [DOI] [PubMed] [Google Scholar]
  26. Milik M., Kolinski A., Skolnick J. Neural network system for the evaluation of side-chain packing in protein structures. Protein Eng. 1995 Mar;8(3):225–236. doi: 10.1093/protein/8.3.225. [DOI] [PubMed] [Google Scholar]
  27. Moeck G. S., Bazzaz B. S., Gras M. F., Ravi T. S., Ratcliffe M. J., Coulton J. W. Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1994 Jul;176(14):4250–4259. doi: 10.1128/jb.176.14.4250-4259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moeck G. S., Ratcliffe M. J., Coulton J. W. Topological analysis of the Escherichia coli ferrichrome-iron receptor by using monoclonal antibodies. J Bacteriol. 1995 Nov;177(21):6118–6125. doi: 10.1128/jb.177.21.6118-6125.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morona R., Klose M., Henning U. Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J Bacteriol. 1984 Aug;159(2):570–578. doi: 10.1128/jb.159.2.570-578.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morona R., Krämer C., Henning U. Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):539–543. doi: 10.1128/jb.164.2.539-543.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murphy C. K., Kalve V. I., Klebba P. E. Surface topology of the Escherichia coli K-12 ferric enterobactin receptor. J Bacteriol. 1990 May;172(5):2736–2746. doi: 10.1128/jb.172.5.2736-2746.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Muskal S. M., Kim S. H. Predicting protein secondary structure content. A tandem neural network approach. J Mol Biol. 1992 Jun 5;225(3):713–727. doi: 10.1016/0022-2836(92)90396-2. [DOI] [PubMed] [Google Scholar]
  33. Newton S. M., Allen J. S., Cao Z., Qi Z., Jiang X., Sprencel C., Igo J. D., Foster S. B., Payne M. A., Klebba P. E. Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4560–4565. doi: 10.1073/pnas.94.9.4560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ostermeier C., Iwata S., Michel H. Cytochrome c oxidase. Curr Opin Struct Biol. 1996 Aug;6(4):460–466. doi: 10.1016/s0959-440x(96)80110-2. [DOI] [PubMed] [Google Scholar]
  35. Paul C., Rosenbusch J. P. Folding patterns of porin and bacteriorhodopsin. EMBO J. 1985 Jun;4(6):1593–1597. doi: 10.1002/j.1460-2075.1985.tb03822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Presnell S. R., Cohen F. E. Artificial neural networks for pattern recognition in biochemical sequences. Annu Rev Biophys Biomol Struct. 1993;22:283–298. doi: 10.1146/annurev.bb.22.060193.001435. [DOI] [PubMed] [Google Scholar]
  37. Qian N., Sejnowski T. J. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988 Aug 20;202(4):865–884. doi: 10.1016/0022-2836(88)90564-5. [DOI] [PubMed] [Google Scholar]
  38. Ried G., Koebnik R., Hindennach I., Mutschler B., Henning U. Membrane topology and assembly of the outer membrane protein OmpA of Escherichia coli K12. Mol Gen Genet. 1994 Apr;243(2):127–135. doi: 10.1007/BF00280309. [DOI] [PubMed] [Google Scholar]
  39. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  41. Rost B., Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins. 1994 Nov;20(3):216–226. doi: 10.1002/prot.340200303. [DOI] [PubMed] [Google Scholar]
  42. Schertler G. F., Villa C., Henderson R. Projection structure of rhodopsin. Nature. 1993 Apr 22;362(6422):770–772. doi: 10.1038/362770a0. [DOI] [PubMed] [Google Scholar]
  43. Srikumar R., Chin A. C., Vachon V., Richardson C. D., Ratcliffe M. J., Saarinen L., Käyhty H., Mäkelä P. H., Coulton J. W. Monoclonal antibodies specific to porin of Haemophilus influenzae type b: localization of their cognate epitopes and tests of their biological activities. Mol Microbiol. 1992 Mar;6(5):665–676. doi: 10.1111/j.1365-2958.1992.tb01514.x. [DOI] [PubMed] [Google Scholar]
  44. Srikumar R., Dahan D., Arhin F. F., Tawa P., Diederichs K., Coulton J. W. Porins of Haemophilus influenzae type b mutated in loop 3 and in loop 4. J Biol Chem. 1997 May 23;272(21):13614–13621. doi: 10.1074/jbc.272.21.13614. [DOI] [PubMed] [Google Scholar]
  45. Srikumar R., Dahan D., Gras M. F., Ratcliffe M. J., van Alphen L., Coulton J. W. Antigenic sites on porin of Haemophilus influenzae type b: mapping with synthetic peptides and evaluation of structure predictions. J Bacteriol. 1992 Jun;174(12):4007–4016. doi: 10.1128/jb.174.12.4007-4016.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stathopoulos C. An alternative topological model for Escherichia coli OmpA. Protein Sci. 1996 Jan;5(1):170–173. doi: 10.1002/pro.5560050122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
  48. Vogel H., Jähnig F. Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol. 1986 Jul 20;190(2):191–199. doi: 10.1016/0022-2836(86)90292-5. [DOI] [PubMed] [Google Scholar]
  49. Welte W., Weiss M. S., Nestel U., Weckesser J., Schiltz E., Schulz G. E. Prediction of the general structure of OmpF and PhoE from the sequence and structure of porin from Rhodobacter capsulatus. Orientation of porin in the membrane. Biochim Biophys Acta. 1991 Nov 15;1080(3):271–274. doi: 10.1016/0167-4838(91)90013-p. [DOI] [PubMed] [Google Scholar]
  50. Yoshikawa S. Beef heart cytochrome c oxidase. Curr Opin Struct Biol. 1997 Aug;7(4):574–579. doi: 10.1016/s0959-440x(97)80124-8. [DOI] [PubMed] [Google Scholar]
  51. Zeth K., Schnaible V., Przybylski M., Welte W., Diederichs K., Engelhardt H. Crystallization and preliminary X-ray crystallographic studies of the native and chemically modified anion-selective porin from Comamonas acidovorans. Acta Crystallogr D Biol Crystallogr. 1998 Jul 1;54(Pt 4):650–653. doi: 10.1107/s0907444997018854. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES