Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Dec;7(12):2522–2532. doi: 10.1002/pro.5560071205

Identification of kinetically hot residues in proteins.

M C Demirel 1, A R Atilgan 1, R L Jernigan 1, B Erman 1, I Bahar 1
PMCID: PMC2143900  PMID: 9865946

Abstract

A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abkevich V. I., Gutin A. M., Shakhnovich E. I. Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry. 1994 Aug 23;33(33):10026–10036. doi: 10.1021/bi00199a029. [DOI] [PubMed] [Google Scholar]
  2. Axelrod H. L., Feher G., Allen J. P., Chirino A. J., Day M. W., Hsu B. T., Rees D. C. Crystallization and X-ray structure determination of cytochrome c2 from Rhodobacter sphaeroides in three crystal forms. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):596–602. doi: 10.1107/S0907444994001319. [DOI] [PubMed] [Google Scholar]
  3. Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997;2(3):173–181. doi: 10.1016/S1359-0278(97)00024-2. [DOI] [PubMed] [Google Scholar]
  4. Bahar I., Jernigan R. L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol. 1997 Feb 14;266(1):195–214. doi: 10.1006/jmbi.1996.0758. [DOI] [PubMed] [Google Scholar]
  5. Bahar I., Wallqvist A., Covell D. G., Jernigan R. L. Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model. Biochemistry. 1998 Jan 27;37(4):1067–1075. doi: 10.1021/bi9720641. [DOI] [PubMed] [Google Scholar]
  6. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benning M. M., Meyer T. E., Holden H. M. X-Ray structure of the cytochrome c2 isolated from Paracoccus denitrificans refined to 1.7-A resolution. Arch Biochem Biophys. 1994 May 1;310(2):460–466. doi: 10.1006/abbi.1994.1193. [DOI] [PubMed] [Google Scholar]
  8. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  9. Chan H. S. Kinetics of protein folding. Nature. 1995 Feb 23;373(6516):664–665. doi: 10.1038/373664a0. [DOI] [PubMed] [Google Scholar]
  10. Colón W., Elöve G. A., Wakem L. P., Sherman F., Roder H. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding. Biochemistry. 1996 Apr 30;35(17):5538–5549. doi: 10.1021/bi960052u. [DOI] [PubMed] [Google Scholar]
  11. Daggett V., Li A., Itzhaki L. S., Otzen D. E., Fersht A. R. Structure of the transition state for folding of a protein derived from experiment and simulation. J Mol Biol. 1996 Mar 29;257(2):430–440. doi: 10.1006/jmbi.1996.0173. [DOI] [PubMed] [Google Scholar]
  12. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elöve G. A., Chaffotte A. F., Roder H., Goldberg M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry. 1992 Aug 4;31(30):6876–6883. doi: 10.1021/bi00145a003. [DOI] [PubMed] [Google Scholar]
  14. Englander S. W., Mayne L., Bai Y., Sosnick T. R. Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci. 1997 May;6(5):1101–1109. doi: 10.1002/pro.5560060517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fersht A. R., Itzhaki L. S., elMasry N. F., Matthews J. M., Otzen D. E. Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10426–10429. doi: 10.1073/pnas.91.22.10426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fersht A. R. Nucleation mechanisms in protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):3–9. doi: 10.1016/s0959-440x(97)80002-4. [DOI] [PubMed] [Google Scholar]
  17. Holm L., Sander C. Parser for protein folding units. Proteins. 1994 Jul;19(3):256–268. doi: 10.1002/prot.340190309. [DOI] [PubMed] [Google Scholar]
  18. Itzhaki L. S., Otzen D. E., Fersht A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol. 1995 Nov 24;254(2):260–288. doi: 10.1006/jmbi.1995.0616. [DOI] [PubMed] [Google Scholar]
  19. Jackson S. E., elMasry N., Fersht A. R. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. Biochemistry. 1993 Oct 26;32(42):11270–11278. doi: 10.1021/bi00093a002. [DOI] [PubMed] [Google Scholar]
  20. Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
  21. Kataoka M., Hagihara Y., Mihara K., Goto Y. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol. 1993 Feb 5;229(3):591–596. doi: 10.1006/jmbi.1993.1064. [DOI] [PubMed] [Google Scholar]
  22. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  23. Kuroda Y., Endo S., Nagayama K., Wada A. Stability of alpha-helices in a molten globule state of cytochrome c by hydrogen-deuterium exchange and two-dimensional NMR spectroscopy. J Mol Biol. 1995 Apr 7;247(4):682–688. doi: 10.1006/jmbi.1995.0272. [DOI] [PubMed] [Google Scholar]
  24. Li A., Daggett V. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J Mol Biol. 1996 Mar 29;257(2):412–429. doi: 10.1006/jmbi.1996.0172. [DOI] [PubMed] [Google Scholar]
  25. López-Hernández E., Serrano L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. Fold Des. 1996;1(1):43–55. [PubMed] [Google Scholar]
  26. Marmorino J. L., Pielak G. J. A native tertiary interaction stabilizes the A state of cytochrome c. Biochemistry. 1995 Mar 14;34(10):3140–3143. doi: 10.1021/bi00010a002. [DOI] [PubMed] [Google Scholar]
  27. McPhalen C. A., James M. N. Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. Biochemistry. 1987 Jan 13;26(1):261–269. doi: 10.1021/bi00375a036. [DOI] [PubMed] [Google Scholar]
  28. Miyazawa S., Jernigan R. L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996 Mar 1;256(3):623–644. doi: 10.1006/jmbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  29. Muñoz V., Lopez E. M., Jager M., Serrano L. Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. Kinetic analysis of the inverse hydrophobic effect. Biochemistry. 1994 May 17;33(19):5858–5866. doi: 10.1021/bi00185a025. [DOI] [PubMed] [Google Scholar]
  30. Neira J. L., Itzhaki L. S., Otzen D. E., Davis B., Fersht A. R. Hydrogen exchange in chymotrypsin inhibitor 2 probed by mutagenesis. J Mol Biol. 1997 Jul 4;270(1):99–110. doi: 10.1006/jmbi.1997.1088. [DOI] [PubMed] [Google Scholar]
  31. Ochi H., Hata Y., Tanaka N., Kakudo M., Sakurai T., Aihara S., Morita Y. Structure of rice ferricytochrome c at 2.0 A resolution. J Mol Biol. 1983 May 25;166(3):407–418. doi: 10.1016/s0022-2836(83)80092-8. [DOI] [PubMed] [Google Scholar]
  32. Otzen D. E., Itzhaki L. S., elMasry N. F., Jackson S. E., Fersht A. R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10422–10425. doi: 10.1073/pnas.91.22.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  34. Ptitsyn O. B. Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes? J Mol Biol. 1998 May 8;278(3):655–666. doi: 10.1006/jmbi.1997.1620. [DOI] [PubMed] [Google Scholar]
  35. Ptitsyn O. B., Rashin A. A. A model of myoglobin self-organization. Biophys Chem. 1975 Feb;3(1):1–20. doi: 10.1016/0301-4622(75)80033-0. [DOI] [PubMed] [Google Scholar]
  36. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Salemme F. R., Freer S. T., Xuong N. H., Alden R. A., Kraut J. The structure of oxidized cytochrome c 2 of Rhodospirillum rubrum. J Biol Chem. 1973 Jun 10;248(11):3910–3921. doi: 10.2210/pdb1c2c/pdb. [DOI] [PubMed] [Google Scholar]
  38. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  39. Schulman B. A., Kim P. S., Dobson C. M., Redfield C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630–634. doi: 10.1038/nsb0897-630. [DOI] [PubMed] [Google Scholar]
  40. Shakhnovich E., Abkevich V., Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature. 1996 Jan 4;379(6560):96–98. doi: 10.1038/379096a0. [DOI] [PubMed] [Google Scholar]
  41. Shoemaker B. A., Wang J., Wolynes P. G. Structural correlations in protein folding funnels. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):777–782. doi: 10.1073/pnas.94.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sogabe S., Miki K. Refined crystal structure of ferrocytochrome c2 from Rhodopseudomonas viridis at 1.6 A resolution. J Mol Biol. 1995 Sep 15;252(2):235–247. doi: 10.1006/jmbi.1995.0491. [DOI] [PubMed] [Google Scholar]
  43. Sosnick T. R., Mayne L., Englander S. W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins. 1996 Apr;24(4):413–426. doi: 10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  44. Stock J. B., Stock A. M., Mottonen J. M. Signal transduction in bacteria. Nature. 1990 Mar 29;344(6265):395–400. doi: 10.1038/344395a0. [DOI] [PubMed] [Google Scholar]
  45. Takahashi S., Yeh S. R., Das T. K., Chan C. K., Gottfried D. S., Rousseau D. L. Folding of cytochrome c initiated by submillisecond mixing. Nat Struct Biol. 1997 Jan;4(1):44–50. doi: 10.1038/nsb0197-44. [DOI] [PubMed] [Google Scholar]
  46. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett. 1996 Aug 26;77(9):1905–1908. doi: 10.1103/PhysRevLett.77.1905. [DOI] [PubMed] [Google Scholar]
  47. Volz K., Matsumura P. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem. 1991 Aug 15;266(23):15511–15519. doi: 10.2210/pdb3chy/pdb. [DOI] [PubMed] [Google Scholar]
  48. Zwanzig R. Two-state models of protein folding kinetics. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):148–150. doi: 10.1073/pnas.94.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES