Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):706–719. doi: 10.1002/pro.5560070320

High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry.

A Ducret 1, I Van Oostveen 1, J K Eng 1, J R Yates 3rd 1, R Aebersold 1
PMCID: PMC2143958  PMID: 9541403

Abstract

We describe an integrated workstation for the automated, high-throughput, and conclusive identification of proteins by reverse-phase chromatography electrospray ionization tandem mass spectrometry. The instrumentation consists of a refrigerated autosampler, a submicrobore reverse-phase liquid chromatograph, and an electrospray triple quadrupole mass spectrometer. For protein identification, enzymatic digests of either homogeneous polypeptides or simple protein mixtures were generated and loaded into the autosampler. Samples were sequentially injected every 32 min. Ions of eluting peptides were automatically selected by the mass spectrometer and subjected to collision-induced dissociation. Following each run, the resulting tandem mass spectra were automatically analyzed by SEQUEST, a program that correlates uninterpreted peptide fragmentation patterns with amino acid sequences contained in databases. Protein identification was established by SEQUEST_SUMMARY a program that combines the SEQUEST scores of peptides originating from the same protein and ranks the cumulative results in a short summary. The workstation's performance was demonstrated by the unattended identification of 90 proteins from the yeast Saccharomyces cerevisiae, which were separated by high-resolution two-dimensional PAGE. The system was found to be very robust and identification was reliably and conclusively established for proteins if quantities exceeding 1-5 pmol were applied to the gel. The level of automation, the throughput, and the reliability of the results suggest that this system will be useful for the many projects that require the characterization of large numbers of proteins.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. G., Anderson N. L. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis. 1996 Mar;17(3):443–453. doi: 10.1002/elps.1150170303. [DOI] [PubMed] [Google Scholar]
  3. Bleasby A. J., Akrigg D., Attwood T. K. OWL--a non-redundant composite protein sequence database. Nucleic Acids Res. 1994 Sep;22(17):3574–3577. [PMC free article] [PubMed] [Google Scholar]
  4. Davis M. T., Stahl D. C., Hefta S. A., Lee T. D. A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures. Anal Chem. 1995 Dec 15;67(24):4549–4556. doi: 10.1021/ac00120a019. [DOI] [PubMed] [Google Scholar]
  5. Ducret A., Bruun C. F., Bures E. J., Marhaug G., Husby G., Aebersold R. Characterization of human serum amyloid A protein isoforms separated by two-dimensional electrophoresis by liquid chromatography/electrospray ionization tandem mass spectrometry. Electrophoresis. 1996 May;17(5):866–876. doi: 10.1002/elps.1150170508. [DOI] [PubMed] [Google Scholar]
  6. Figeys D., Ducret A., Yates J. R., 3rd, Aebersold R. Protein identification by solid phase microextraction-capillary zone electrophoresis-microelectrospray-tandem mass spectrometry. Nat Biotechnol. 1996 Nov;14(11):1579–1583. doi: 10.1038/nbt1196-1579. [DOI] [PubMed] [Google Scholar]
  7. Figeys D., van Oostveen I., Ducret A., Aebersold R. Protein identification by capillary zone electrophoresis/microelectrospray ionization-tandem mass spectrometry at the subfemtomole level. Anal Chem. 1996 Jun 1;68(11):1822–1828. doi: 10.1021/ac960191h. [DOI] [PubMed] [Google Scholar]
  8. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  9. Jazwinski S. M. Preparation of extracts from yeast. Methods Enzymol. 1990;182:154–174. doi: 10.1016/0076-6879(90)82015-t. [DOI] [PubMed] [Google Scholar]
  10. Link A. J., Hays L. G., Carmack E. B., Yates J. R., 3rd Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis. 1997 Aug;18(8):1314–1334. doi: 10.1002/elps.1150180808. [DOI] [PubMed] [Google Scholar]
  11. Mann M., Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
  12. Moritz R. L., Simpson R. J. Application of capillary reversed-phase high-performance liquid chromatography to high-sensitivity protein sequence analysis. J Chromatogr. 1992 May 22;599(1-2):119–130. doi: 10.1016/0021-9673(92)85464-5. [DOI] [PubMed] [Google Scholar]
  13. Patterson S. D., Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995 Oct;16(10):1791–1814. doi: 10.1002/elps.11501601299. [DOI] [PubMed] [Google Scholar]
  14. Rabilloud T., Vuillard L., Gilly C., Lawrence J. J. Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol (Noisy-le-grand) 1994 Feb;40(1):57–75. [PubMed] [Google Scholar]
  15. Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H., Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14440–14445. doi: 10.1073/pnas.93.25.14440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilkins M. R., Sanchez J. C., Gooley A. A., Appel R. D., Humphery-Smith I., Hochstrasser D. F., Williams K. L. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50. doi: 10.1080/02648725.1996.10647923. [DOI] [PubMed] [Google Scholar]
  17. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
  18. Yates J. R., 3rd, Eng J. K., McCormack A. L., Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995 Apr 15;67(8):1426–1436. doi: 10.1021/ac00104a020. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES