Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):533–544. doi: 10.1002/pro.5560070301

Mechanism and evolution of protein dimerization.

D Xu 1, C J Tsai 1, R Nussinov 1
PMCID: PMC2143968  PMID: 9541384

Abstract

We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceto A., Caccuri A. M., Sacchetta P., Bucciarelli T., Dragani B., Rosato N., Federici G., Di Ilio C. Dissociation and unfolding of Pi-class glutathione transferase. Evidence for a monomeric inactive intermediate. Biochem J. 1992 Jul 1;285(Pt 1):241–245. doi: 10.1042/bj2850241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banik U., Saha R., Mandal N. C., Bhattacharyya B., Roy S. Multiphasic denaturation of the lambda repressor by urea and its implications for the repressor structure. Eur J Biochem. 1992 May 15;206(1):15–21. doi: 10.1111/j.1432-1033.1992.tb16896.x. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. J., Choe S., Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3127–3131. doi: 10.1073/pnas.91.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Borchert T. V., Zeelen J. P., Schliebs W., Callens M., Minke W., Jaenicke R., Wierenga R. K. An interface point-mutation variant of triosephosphate isomerase is compactly folded and monomeric at low protein concentrations. FEBS Lett. 1995 Jul 3;367(3):315–318. doi: 10.1016/0014-5793(95)00586-x. [DOI] [PubMed] [Google Scholar]
  7. Bourne Y., Arvai A. S., Bernstein S. L., Watson M. H., Reed S. I., Endicott J. E., Noble M. E., Johnson L. N., Tainer J. A. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10232–10236. doi: 10.1073/pnas.92.22.10232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  9. Cunningham B. C., Wells J. A. Comparison of a structural and a functional epitope. J Mol Biol. 1993 Dec 5;234(3):554–563. doi: 10.1006/jmbi.1993.1611. [DOI] [PubMed] [Google Scholar]
  10. D'Alessio G. Oligomer evolution in action? Nat Struct Biol. 1995 Jan;2(1):11–13. doi: 10.1038/nsb0195-11. [DOI] [PubMed] [Google Scholar]
  11. De Francesco R., Pastore A., Vecchio G., Cortese R. Circular dichroism study on the conformational stability of the dimerization domain of transcription factor LFB1. Biochemistry. 1991 Jan 8;30(1):143–147. doi: 10.1021/bi00215a021. [DOI] [PubMed] [Google Scholar]
  12. Grant S. K., Deckman I. C., Culp J. S., Minnich M. D., Brooks I. S., Hensley P., Debouck C., Meek T. D. Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases. Biochemistry. 1992 Oct 6;31(39):9491–9501. doi: 10.1021/bi00154a023. [DOI] [PubMed] [Google Scholar]
  13. Herold M., Kirschner K. Reversible dissociation and unfolding of aspartate aminotransferase from Escherichia coli: characterization of a monomeric intermediate. Biochemistry. 1990 Feb 20;29(7):1907–1913. doi: 10.1021/bi00459a035. [DOI] [PubMed] [Google Scholar]
  14. Kippen A. D., Sancho J., Fersht A. R. Folding of barnase in parts. Biochemistry. 1994 Mar 29;33(12):3778–3786. doi: 10.1021/bi00178a039. [DOI] [PubMed] [Google Scholar]
  15. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  16. Liang H., Terwilliger T. C. Reversible denaturation of the gene V protein of bacteriophage f1. Biochemistry. 1991 Mar 19;30(11):2772–2782. doi: 10.1021/bi00225a006. [DOI] [PubMed] [Google Scholar]
  17. Mann C. J., Royer C. A., Matthews C. R. Tryptophan replacements in the trp aporepressor from Escherichia coli: probing the equilibrium and kinetic folding models. Protein Sci. 1993 Nov;2(11):1853–1861. doi: 10.1002/pro.5560021107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mei G., Rosato N., Silva N., Jr, Rusch R., Gratton E., Savini I., Finazzi-Agrò A. Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: a dynamic fluorescence study. Biochemistry. 1992 Aug 18;31(32):7224–7230. doi: 10.1021/bi00147a003. [DOI] [PubMed] [Google Scholar]
  19. Milla M. E., Sauer R. T. P22 Arc repressor: folding kinetics of a single-domain, dimeric protein. Biochemistry. 1994 Feb 8;33(5):1125–1133. doi: 10.1021/bi00171a011. [DOI] [PubMed] [Google Scholar]
  20. Monera O. D., Shaw G. S., Zhu B. Y., Sykes B. D., Kay C. M., Hodges R. S. Role of interchain alpha-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C. Protein Sci. 1992 Jul;1(7):945–955. doi: 10.1002/pro.5560010713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  23. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  24. Russell R. B. Domain insertion. Protein Eng. 1994 Dec;7(12):1407–1410. doi: 10.1093/protein/7.12.1407. [DOI] [PubMed] [Google Scholar]
  25. Steif C., Weber P., Hinz H. J., Flossdorf J., Cesareni G., Kokkinidis M. Subunit interactions provide a significant contribution to the stability of the dimeric four-alpha-helical-bundle protein ROP. Biochemistry. 1993 Apr 20;32(15):3867–3876. doi: 10.1021/bi00066a005. [DOI] [PubMed] [Google Scholar]
  26. Tasayco M. L., Carey J. Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. Science. 1992 Jan 31;255(5044):594–597. doi: 10.1126/science.1736361. [DOI] [PubMed] [Google Scholar]
  27. Tegoni M., Ramoni R., Bignetti E., Spinelli S., Cambillau C. Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol. 1996 Oct;3(10):863–867. doi: 10.1038/nsb1096-863. [DOI] [PubMed] [Google Scholar]
  28. Timm D. E., de Haseth P. L., Neet K. E. Comparative equilibrium denaturation studies of the neurotrophins: nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, and neurotrophin 4/5. Biochemistry. 1994 Apr 19;33(15):4667–4676. doi: 10.1021/bi00181a602. [DOI] [PubMed] [Google Scholar]
  29. Tsai C. J., Nussinov R. Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association. Protein Sci. 1997 Jul;6(7):1426–1437. doi: 10.1002/pro.5560060707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsai C. J., Xu D., Nussinov R. Structural motifs at protein-protein interfaces: protein cores versus two-state and three-state model complexes. Protein Sci. 1997 Sep;6(9):1793–1805. doi: 10.1002/pro.5560060901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu L. C., Grandori R., Carey J. Autonomous subdomains in protein folding. Protein Sci. 1994 Mar;3(3):369–371. doi: 10.1002/pro.5560030301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zetina C. R., Goldberg M. E. Reversible unfolding of the beta 2 subunit of Escherichia coli tryptophan synthetase and its proteolytic fragments. J Mol Biol. 1980 Mar 15;137(4):401–414. doi: 10.1016/0022-2836(80)90165-5. [DOI] [PubMed] [Google Scholar]
  33. Zwanzig R. Two-state models of protein folding kinetics. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):148–150. doi: 10.1073/pnas.94.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES