Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):860–874. doi: 10.1002/pro.5560070404

Molecular dynamics simulations of hydrophobic collapse of ubiquitin.

D O Alonso 1, V Daggett 1
PMCID: PMC2143980  PMID: 9568893

Abstract

Nine nonnative conformations of ubiquitin, generated during two different thermal denaturation trajectories, were simulated under nearly native conditions (62 degrees C). The simulations included all protein and solvent atoms explicitly, and simulation times ranged from 1-2.4 ns. The starting structures had alpha-carbon root-mean-square deviations (RMSDs) from the crystal structure of 4-12 A and radii of gyration as high as 1.3 times that of the native state. In all but one case, the protein collapsed when the temperature was lowered and sampled conformations as compact as those reached in a control simulation beginning from the crystal structure. In contrast, the protein did not collapse when simulated in a 60% methanol:water mixture. The behavior of the protein depended on the starting structure: during simulation of the most native-like starting structures (<5 A RMSD to the crystal structure) the RMSD decreased, the number of native hydrogen bonds increased, and the secondary and tertiary structure increased. Intermediate starting structures (5-10 A RMSD) collapsed to the radius of gyration of the control simulation, hydrophobic residues were preferentially buried, and the protein acquired some native contacts. However, the protein did not refold. The least native starting structures (10-12 A RMSD) did not collapse as completely as the more native-like structures; instead, they experienced large fluctuations in radius of gyration and went through cycles of expansion and collapse, with improved burial of hydrophobic residues in successive collapsed states.

Full Text

The Full Text of this article is available as a PDF (11.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agashe V. R., Shastry M. C., Udgaonkar J. B. Initial hydrophobic collapse in the folding of barstar. Nature. 1995 Oct 26;377(6551):754–757. doi: 10.1038/377754a0. [DOI] [PubMed] [Google Scholar]
  2. Alonso D. O., Daggett V. Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water. J Mol Biol. 1995 Mar 31;247(3):501–520. doi: 10.1006/jmbi.1994.0156. [DOI] [PubMed] [Google Scholar]
  3. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  4. Baker D., Agard D. A. Kinetics versus thermodynamics in protein folding. Biochemistry. 1994 Jun 21;33(24):7505–7509. doi: 10.1021/bi00190a002. [DOI] [PubMed] [Google Scholar]
  5. Baldwin R. L. How does protein folding get started? Trends Biochem Sci. 1989 Jul;14(7):291–294. doi: 10.1016/0968-0004(89)90067-4. [DOI] [PubMed] [Google Scholar]
  6. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boczko E. M., Brooks C. L., 3rd First-principles calculation of the folding free energy of a three-helix bundle protein. Science. 1995 Jul 21;269(5222):393–396. doi: 10.1126/science.7618103. [DOI] [PubMed] [Google Scholar]
  8. Bond C. J., Wong K. B., Clarke J., Fersht A. R., Daggett V. Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: description of the folding pathway. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13409–13413. doi: 10.1073/pnas.94.25.13409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  11. Caflisch A., Karplus M. Acid and thermal denaturation of barnase investigated by molecular dynamics simulations. J Mol Biol. 1995 Oct 6;252(5):672–708. doi: 10.1006/jmbi.1995.0528. [DOI] [PubMed] [Google Scholar]
  12. Caflisch A., Karplus M. Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1746–1750. doi: 10.1073/pnas.91.5.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Camacho C. J., Thirumalai D. Kinetics and thermodynamics of folding in model proteins. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6369–6372. doi: 10.1073/pnas.90.13.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chaffotte A. F., Cadieux C., Guillou Y., Goldberg M. E. A possible initial folding intermediate: the C-terminal proteolytic domain of tryptophan synthase beta chains folds in less than 4 milliseconds into a condensed state with non-native-like secondary structure. Biochemistry. 1992 May 5;31(17):4303–4308. doi: 10.1021/bi00132a022. [DOI] [PubMed] [Google Scholar]
  15. Covell D. G., Jernigan R. L. Conformations of folded proteins in restricted spaces. Biochemistry. 1990 Apr 3;29(13):3287–3294. doi: 10.1021/bi00465a020. [DOI] [PubMed] [Google Scholar]
  16. Covell D. G. Lattice model simulations of polypeptide chain folding. J Mol Biol. 1994 Jan 21;235(3):1032–1043. doi: 10.1006/jmbi.1994.1055. [DOI] [PubMed] [Google Scholar]
  17. Daggett V., Levitt M. Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol. 1993 Jul 20;232(2):600–619. doi: 10.1006/jmbi.1993.1414. [DOI] [PubMed] [Google Scholar]
  18. Daggett V., Li A., Itzhaki L. S., Otzen D. E., Fersht A. R. Structure of the transition state for folding of a protein derived from experiment and simulation. J Mol Biol. 1996 Mar 29;257(2):430–440. doi: 10.1006/jmbi.1996.0173. [DOI] [PubMed] [Google Scholar]
  19. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  21. Engelhard M., Evans P. A. Experimental investigation of sidechain interactions in early folding intermediates. Fold Des. 1996;1(2):R31–R37. doi: 10.1016/S1359-0278(96)00016-8. [DOI] [PubMed] [Google Scholar]
  22. Feng H. P., Widom J. Kinetics of compaction during lysozyme refolding studied by continuous-flow quasielastic light scattering. Biochemistry. 1994 Nov 15;33(45):13382–13390. doi: 10.1021/bi00249a026. [DOI] [PubMed] [Google Scholar]
  23. Fersht A. R., Itzhaki L. S., elMasry N. F., Matthews J. M., Otzen D. E. Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10426–10429. doi: 10.1073/pnas.91.22.10426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Guo Z., Brooks C. L., 3rd, Boczko E. M. Exploring the folding free energy surface of a three-helix bundle protein. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10161–10166. doi: 10.1073/pnas.94.19.10161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hao M. H., Pincus M. R., Rackovsky S., Scheraga H. A. Unfolding and refolding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry. 1993 Sep 21;32(37):9614–9631. doi: 10.1021/bi00088a014. [DOI] [PubMed] [Google Scholar]
  26. Hinds D. A., Levitt M. A lattice model for protein structure prediction at low resolution. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2536–2540. doi: 10.1073/pnas.89.7.2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hinds D. A., Levitt M. Exploring conformational space with a simple lattice model for protein structure. J Mol Biol. 1994 Nov 4;243(4):668–682. doi: 10.1016/0022-2836(94)90040-x. [DOI] [PubMed] [Google Scholar]
  28. Houry W. A., Rothwarf D. M., Scheraga H. A. Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A. Biochemistry. 1996 Aug 6;35(31):10125–10133. doi: 10.1021/bi960617m. [DOI] [PubMed] [Google Scholar]
  29. Huang G. S., Oas T. G. Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6878–6882. doi: 10.1073/pnas.92.15.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hünenberger P. H., Mark A. E., van Gunsteren W. F. Computational approaches to study protein unfolding: hen egg white lysozyme as a case study. Proteins. 1995 Mar;21(3):196–213. doi: 10.1002/prot.340210303. [DOI] [PubMed] [Google Scholar]
  31. Itzhaki L. S., Evans P. A., Dobson C. M., Radford S. E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry. 1994 May 3;33(17):5212–5220. doi: 10.1021/bi00183a026. [DOI] [PubMed] [Google Scholar]
  32. Itzhaki L. S., Otzen D. E., Fersht A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol. 1995 Nov 24;254(2):260–288. doi: 10.1006/jmbi.1995.0616. [DOI] [PubMed] [Google Scholar]
  33. Jaenicke R. Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):97–105. doi: 10.1098/rstb.1995.0050. [DOI] [PubMed] [Google Scholar]
  34. Jenson J., Goldstein G., Breslow E. Physical-chemical properties of ubiquitin. Biochim Biophys Acta. 1980 Aug 21;624(2):378–385. doi: 10.1016/0005-2795(80)90079-3. [DOI] [PubMed] [Google Scholar]
  35. Jones B. E., Beechem J. M., Matthews C. R. Local and global dynamics during the folding of Escherichia coli dihydrofolate reductase by time-resolved fluorescence spectroscopy. Biochemistry. 1995 Feb 14;34(6):1867–1877. doi: 10.1021/bi00006a007. [DOI] [PubMed] [Google Scholar]
  36. Jones B. E., Jennings P. A., Pierre R. A., Matthews C. R. Development of nonpolar surfaces in the folding of Escherichia coli dihydrofolate reductase detected by 1-anilinonaphthalene-8-sulfonate binding. Biochemistry. 1994 Dec 27;33(51):15250–15258. doi: 10.1021/bi00255a005. [DOI] [PubMed] [Google Scholar]
  37. Jones B. E., Matthews C. R. Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. Protein Sci. 1995 Feb;4(2):167–177. doi: 10.1002/pro.5560040204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Khorasanizadeh S., Peters I. D., Butt T. R., Roder H. Folding and stability of a tryptophan-containing mutant of ubiquitin. Biochemistry. 1993 Jul 13;32(27):7054–7063. doi: 10.1021/bi00078a034. [DOI] [PubMed] [Google Scholar]
  39. Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
  40. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  41. Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
  42. Lenkinski R. E., Chen D. M., Glickson J. D., Goldstein G. Nuclear magnetic resonance studies of the denaturation of ubiquitin. Biochim Biophys Acta. 1977 Sep 27;494(1):126–130. doi: 10.1016/0005-2795(77)90140-4. [DOI] [PubMed] [Google Scholar]
  43. Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
  44. Li A., Daggett V. Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10430–10434. doi: 10.1073/pnas.91.22.10430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Li A., Daggett V. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J Mol Biol. 1996 Mar 29;257(2):412–429. doi: 10.1006/jmbi.1996.0172. [DOI] [PubMed] [Google Scholar]
  46. Li A., Daggett V. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate. J Mol Biol. 1998 Jan 30;275(4):677–694. doi: 10.1006/jmbi.1997.1484. [DOI] [PubMed] [Google Scholar]
  47. Lopez-Hernandez E, Serrano L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. Fold Des. 1995;1(1):43–55. [PubMed] [Google Scholar]
  48. Mann C. J., Matthews C. R. Structure and stability of an early folding intermediate of Escherichia coli trp aporepressor measured by far-UV stopped-flow circular dichroism and 8-anilino-1-naphthalene sulfonate binding. Biochemistry. 1993 May 25;32(20):5282–5290. doi: 10.1021/bi00071a002. [DOI] [PubMed] [Google Scholar]
  49. Mark A. E., van Gunsteren W. F. Simulation of the thermal denaturation of hen egg white lysozyme: trapping the molten globule state. Biochemistry. 1992 Sep 1;31(34):7745–7748. doi: 10.1021/bi00149a001. [DOI] [PubMed] [Google Scholar]
  50. Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
  51. Miranker A. D., Dobson C. M. Collapse and cooperativity in protein folding. Curr Opin Struct Biol. 1996 Feb;6(1):31–42. doi: 10.1016/s0959-440x(96)80092-3. [DOI] [PubMed] [Google Scholar]
  52. Moult J., Unger R. An analysis of protein folding pathways. Biochemistry. 1991 Apr 23;30(16):3816–3824. doi: 10.1021/bi00230a003. [DOI] [PubMed] [Google Scholar]
  53. Nölting B., Golbik R., Fersht A. R. Submillisecond events in protein folding. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10668–10672. doi: 10.1073/pnas.92.23.10668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Otzen D. E., Itzhaki L. S., elMasry N. F., Jackson S. E., Fersht A. R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10422–10425. doi: 10.1073/pnas.91.22.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pascher T., Chesick J. P., Winkler J. R., Gray H. B. Protein folding triggered by electron transfer. Science. 1996 Mar 15;271(5255):1558–1560. doi: 10.1126/science.271.5255.1558. [DOI] [PubMed] [Google Scholar]
  56. Plaxco K. W., Dobson C. M. Time-resolved biophysical methods in the study of protein folding. Curr Opin Struct Biol. 1996 Oct;6(5):630–636. doi: 10.1016/s0959-440x(96)80029-7. [DOI] [PubMed] [Google Scholar]
  57. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  58. Sieber V., Moe G. R. Interactions contributing to the formation of a beta-hairpin-like structure in a small peptide. Biochemistry. 1996 Jan 9;35(1):181–188. doi: 10.1021/bi950681o. [DOI] [PubMed] [Google Scholar]
  59. Skolnick J., Kolinski A. Simulations of the folding of a globular protein. Science. 1990 Nov 23;250(4984):1121–1125. doi: 10.1126/science.250.4984.1121. [DOI] [PubMed] [Google Scholar]
  60. Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
  61. Tirado-Rives J., Jorgensen W. L. Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry. 1993 Apr 27;32(16):4175–4184. doi: 10.1021/bi00067a004. [DOI] [PubMed] [Google Scholar]
  62. Tirado-Rives J., Orozco M., Jorgensen W. L. Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. Biochemistry. 1997 Jun 17;36(24):7313–7329. doi: 10.1021/bi970096i. [DOI] [PubMed] [Google Scholar]
  63. Viguera A. R., Martínez J. C., Filimonov V. V., Mateo P. L., Serrano L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry. 1994 Mar 1;33(8):2142–2150. doi: 10.1021/bi00174a022. [DOI] [PubMed] [Google Scholar]
  64. Vijay-Kumar S., Bugg C. E., Cook W. J. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531–544. doi: 10.1016/0022-2836(87)90679-6. [DOI] [PubMed] [Google Scholar]
  65. Vijayakumar S., Vishveshwara S., Ravishanker G., Beveridge D. L. Differential stability of beta-sheets and alpha-helices in beta-lactamase: a high temperature molecular dynamics study of unfolding intermediates. Biophys J. 1993 Dec;65(6):2304–2312. doi: 10.1016/S0006-3495(93)81288-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wang Y., Shortle D. A dynamic bundle of four adjacent hydrophobic segments in the denatured state of staphylococcal nuclease. Protein Sci. 1996 Sep;5(9):1898–1906. doi: 10.1002/pro.5560050916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  68. Wolynes P., Luthey-Schulten Z., Onuchic J. Fast-folding experiments and the topography of protein folding energy landscapes. Chem Biol. 1996 Jun;3(6):425–432. doi: 10.1016/s1074-5521(96)90090-3. [DOI] [PubMed] [Google Scholar]
  69. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. de Prat Gay G., Ruiz-Sanz J., Davis B., Fersht A. R. The structure of the transition state for the association of two fragments of the barley chymotrypsin inhibitor 2 to generate native-like protein: implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10943–10946. doi: 10.1073/pnas.91.23.10943. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES