Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):938–950. doi: 10.1002/pro.5560070411

Flexible ligand docking using conformational ensembles.

D M Lorber 1, B K Shoichet 1
PMCID: PMC2143983  PMID: 9568900

Abstract

Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation.

Full Text

The Full Text of this article is available as a PDF (9.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Bodian D. L., Yamasaki R. B., Buswell R. L., Stearns J. F., White J. M., Kuntz I. D. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry. 1993 Mar 30;32(12):2967–2978. doi: 10.1021/bi00063a007. [DOI] [PubMed] [Google Scholar]
  3. Bystroff C., Oatley S. J., Kraut J. Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate.NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry. 1990 Apr 3;29(13):3263–3277. doi: 10.1021/bi00465a018. [DOI] [PubMed] [Google Scholar]
  4. Caflisch A., Niederer P., Anliker M. Monte Carlo docking of oligopeptides to proteins. Proteins. 1992 Jul;13(3):223–230. doi: 10.1002/prot.340130305. [DOI] [PubMed] [Google Scholar]
  5. Connolly M. L. Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface. Biopolymers. 1986 Jul;25(7):1229–1247. doi: 10.1002/bip.360250705. [DOI] [PubMed] [Google Scholar]
  6. DesJarlais R. L., Seibel G. L., Kuntz I. D., Furth P. S., Alvarez J. C., Ortiz de Montellano P. R., DeCamp D. L., Babé L. M., Craik C. S. Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6644–6648. doi: 10.1073/pnas.87.17.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DesJarlais R. L., Sheridan R. P., Dixon J. S., Kuntz I. D., Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem. 1986 Nov;29(11):2149–2153. doi: 10.1021/jm00161a004. [DOI] [PubMed] [Google Scholar]
  8. DesJarlais R. L., Sheridan R. P., Seibel G. L., Dixon J. S., Kuntz I. D., Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem. 1988 Apr;31(4):722–729. doi: 10.1021/jm00399a006. [DOI] [PubMed] [Google Scholar]
  9. Dunn C. R., Wilks H. M., Halsall D. J., Atkinson T., Clarke A. R., Muirhead H., Holbrook J. J. Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Philos Trans R Soc Lond B Biol Sci. 1991 May 29;332(1263):177–184. doi: 10.1098/rstb.1991.0047. [DOI] [PubMed] [Google Scholar]
  10. Goodsell D. S., Olson A. J. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990;8(3):195–202. doi: 10.1002/prot.340080302. [DOI] [PubMed] [Google Scholar]
  11. Goodsell D. S., Olson A. J. Soluble proteins: size, shape and function. Trends Biochem Sci. 1993 Mar;18(3):65–68. doi: 10.1016/0968-0004(93)90153-e. [DOI] [PubMed] [Google Scholar]
  12. Güner O. F., Hughes D. W., Dumont L. M. An integrated approach to three-dimensional information management with MACCS-3D. J Chem Inf Comput Sci. 1991 Aug;31(3):408–414. doi: 10.1021/ci00003a007. [DOI] [PubMed] [Google Scholar]
  13. Janin J. Protein-protein recognition. Prog Biophys Mol Biol. 1995;64(2-3):145–166. doi: 10.1016/s0079-6107(96)00001-6. [DOI] [PubMed] [Google Scholar]
  14. Jiang F., Kim S. H. "Soft docking": matching of molecular surface cubes. J Mol Biol. 1991 May 5;219(1):79–102. doi: 10.1016/0022-2836(91)90859-5. [DOI] [PubMed] [Google Scholar]
  15. Jones G., Willett P., Glen R. C., Leach A. R., Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997 Apr 4;267(3):727–748. doi: 10.1006/jmbi.1996.0897. [DOI] [PubMed] [Google Scholar]
  16. Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R., Ferrin T. E. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982 Oct 25;161(2):269–288. doi: 10.1016/0022-2836(82)90153-x. [DOI] [PubMed] [Google Scholar]
  17. Kuntz I. D. Structure-based strategies for drug design and discovery. Science. 1992 Aug 21;257(5073):1078–1082. doi: 10.1126/science.257.5073.1078. [DOI] [PubMed] [Google Scholar]
  18. Malby R. L., Tulip W. R., Harley V. R., McKimm-Breschkin J. L., Laver W. G., Webster R. G., Colman P. M. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure. 1994 Aug 15;2(8):733–746. doi: 10.1016/s0969-2126(00)00074-5. [DOI] [PubMed] [Google Scholar]
  19. Miranker A., Karplus M. An automated method for dynamic ligand design. Proteins. 1995 Dec;23(4):472–490. doi: 10.1002/prot.340230403. [DOI] [PubMed] [Google Scholar]
  20. Miranker A., Karplus M. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins. 1991;11(1):29–34. doi: 10.1002/prot.340110104. [DOI] [PubMed] [Google Scholar]
  21. Moon J. B., Howe W. J. Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins. 1991;11(4):314–328. doi: 10.1002/prot.340110409. [DOI] [PubMed] [Google Scholar]
  22. Oshiro C. M., Kuntz I. D., Dixon J. S. Flexible ligand docking using a genetic algorithm. J Comput Aided Mol Des. 1995 Apr;9(2):113–130. doi: 10.1007/BF00124402. [DOI] [PubMed] [Google Scholar]
  23. Perry K. M., Fauman E. B., Finer-Moore J. S., Montfort W. R., Maley G. F., Maley F., Stroud R. M. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins. 1990;8(4):315–333. doi: 10.1002/prot.340080406. [DOI] [PubMed] [Google Scholar]
  24. Rarey M., Kramer B., Lengauer T., Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996 Aug 23;261(3):470–489. doi: 10.1006/jmbi.1996.0477. [DOI] [PubMed] [Google Scholar]
  25. Ring C. S., Sun E., McKerrow J. H., Lee G. K., Rosenthal P. J., Kuntz I. D., Cohen F. E. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3583–3587. doi: 10.1073/pnas.90.8.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose G. D. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature. 1978 Apr 13;272(5654):586–590. doi: 10.1038/272586a0. [DOI] [PubMed] [Google Scholar]
  27. Rutenber E., Fauman E. B., Keenan R. J., Fong S., Furth P. S., Ortiz de Montellano P. R., Meng E., Kuntz I. D., DeCamp D. L., Salto R. Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J Biol Chem. 1993 Jul 25;268(21):15343–15346. [PubMed] [Google Scholar]
  28. Sandak B., Nussinov R., Wolfson H. J. An automated computer vision and robotics-based technique for 3-D flexible biomolecular docking and matching. Comput Appl Biosci. 1995 Feb;11(1):87–99. doi: 10.1093/bioinformatics/11.1.87. [DOI] [PubMed] [Google Scholar]
  29. Shoichet B. K., Kuntz I. D. Matching chemistry and shape in molecular docking. Protein Eng. 1993 Sep;6(7):723–732. doi: 10.1093/protein/6.7.723. [DOI] [PubMed] [Google Scholar]
  30. Shoichet B. K., Kuntz I. D. Predicting the structure of protein complexes: a step in the right direction. Chem Biol. 1996 Mar;3(3):151–156. doi: 10.1016/s1074-5521(96)90256-2. [DOI] [PubMed] [Google Scholar]
  31. Shoichet B. K., Kuntz I. D. Protein docking and complementarity. J Mol Biol. 1991 Sep 5;221(1):327–346. doi: 10.1016/0022-2836(91)80222-g. [DOI] [PubMed] [Google Scholar]
  32. Shoichet B. K., Stroud R. M., Santi D. V., Kuntz I. D., Perry K. M. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993 Mar 5;259(5100):1445–1450. doi: 10.1126/science.8451640. [DOI] [PubMed] [Google Scholar]
  33. Stoddard B. L., Koshland D. E., Jr Prediction of the structure of a receptor-protein complex using a binary docking method. Nature. 1992 Aug 27;358(6389):774–776. doi: 10.1038/358774a0. [DOI] [PubMed] [Google Scholar]
  34. Stout T. J., Stroud R. M. The complex of the anti-cancer therapeutic, BW1843U89, with thymidylate synthase at 2.0 A resolution: implications for a new mode of inhibition. Structure. 1996 Jan 15;4(1):67–77. doi: 10.1016/s0969-2126(96)00010-x. [DOI] [PubMed] [Google Scholar]
  35. Strynadka N. C., Eisenstein M., Katchalski-Katzir E., Shoichet B. K., Kuntz I. D., Abagyan R., Totrov M., Janin J., Cherfils J., Zimmerman F. Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nat Struct Biol. 1996 Mar;3(3):233–239. doi: 10.1038/nsb0396-233. [DOI] [PubMed] [Google Scholar]
  36. Strynadka N. C., Jensen S. E., Johns K., Blanchard H., Page M., Matagne A., Frère J. M., James M. N. Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature. 1994 Apr 14;368(6472):657–660. doi: 10.1038/368657a0. [DOI] [PubMed] [Google Scholar]
  37. Verkhivker G. M., Rejto P. A., Gehlhaar D. K., Freer S. T. Exploring the energy landscapes of molecular recognition by a genetic algorithm: analysis of the requirements for robust docking of HIV-1 protease and FKBP-12 complexes. Proteins. 1996 Jul;25(3):342–353. doi: 10.1002/(SICI)1097-0134(199607)25:3<342::AID-PROT6>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  38. Wasserman Z. R., Hodge C. N. Fitting an inhibitor into the active site of thermolysin: a molecular dynamics case study. Proteins. 1996 Feb;24(2):227–237. doi: 10.1002/(SICI)1097-0134(199602)24:2<227::AID-PROT9>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  39. Welch W., Ruppert J., Jain A. N. Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol. 1996 Jun;3(6):449–462. doi: 10.1016/s1074-5521(96)90093-9. [DOI] [PubMed] [Google Scholar]
  40. Wodak S. J., Janin J. Computer analysis of protein-protein interaction. J Mol Biol. 1978 Sep 15;124(2):323–342. doi: 10.1016/0022-2836(78)90302-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES