Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1451–1457. doi: 10.1002/pro.5560070622

In vivo acetylation identified at lysine 70 of human lens alphaA-crystallin.

P P Lin 1, R C Barry 1, D L Smith 1, J B Smith 1
PMCID: PMC2144031  PMID: 9655350

Abstract

Posttranslational modification of protein lysyl residues that change the net charge of the molecule may alter the protein conformation. Such modifications are of particular significance among lens proteins, because conformational changes are associated with the development of cataract. A previously unidentified acetylated form of alphaA-crystallin has been isolated from the water-soluble portion of human lenses. The alphaA-crystallins were fractionated by anion exchange HPLC into seven peaks, each containing more than one form of alphaA-crystallin. The previously reported deamidated and phosphorylated forms were identified by their molecular masses, determined by electrospray ionization mass spectrometry. In addition to these modifications, approximately 5% of alphaA-crystallin had a modification that decreased the charge by one and increased the molecular mass by 42 u. This modification, identified as acetylation, was located uniquely at Lys 70. Like any modification that alters the surface charge, acetylation may affect protein conformation and intermolecular interactions, thereby altering the solubility or chaperone properties of alphaA-crystallin. Acetylation of lysine 70 is potentially significant since it is located in a region that has been implicated in the chaperone activity of alphaA-crystallin.

Full Text

The Full Text of this article is available as a PDF (660.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. C., Cherian M., Smith J. B. Site selectivity in the glycation of alpha A- and alpha B-crystallins by glucose. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1451–1456. doi: 10.1006/bbrc.1994.1866. [DOI] [PubMed] [Google Scholar]
  2. Beswick H. T., Harding J. J. Conformational changes induced in bovine lens alpha-crystallin by carbamylation. Relevance to cataract. Biochem J. 1984 Oct 1;223(1):221–227. doi: 10.1042/bj2230221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beswick H. T., Harding J. J. High-molecular-weight crystallin aggregate formation resulting from non-enzymic carbamylation of lens crystallins: relevance to cataract formation. Exp Eye Res. 1987 Oct;45(4):569–578. doi: 10.1016/s0014-4835(87)80067-2. [DOI] [PubMed] [Google Scholar]
  4. Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 1990;193:455–479. doi: 10.1016/0076-6879(90)93433-l. [DOI] [PubMed] [Google Scholar]
  5. Blakytny R., Harding J. J. Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp Eye Res. 1992 Apr;54(4):509–518. doi: 10.1016/0014-4835(92)90129-g. [DOI] [PubMed] [Google Scholar]
  6. Crompton M., Rixon K. C., Harding J. J. Aspirin prevents carbamylation of soluble lens proteins and prevents cyanate-induced phase separation opacities in vitro: a possible mechanism by which aspirin could prevent cataract. Exp Eye Res. 1985 Feb;40(2):297–311. doi: 10.1016/0014-4835(85)90014-4. [DOI] [PubMed] [Google Scholar]
  7. Das K. P., Surewicz W. K. Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 1995 Aug 7;369(2-3):321–325. doi: 10.1016/0014-5793(95)00775-5. [DOI] [PubMed] [Google Scholar]
  8. Dunn J. A., Patrick J. S., Thorpe S. R., Baynes J. W. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry. 1989 Nov 28;28(24):9464–9468. doi: 10.1021/bi00450a033. [DOI] [PubMed] [Google Scholar]
  9. Dyer D. G., Blackledge J. A., Thorpe S. R., Baynes J. W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991 Jun 25;266(18):11654–11660. [PubMed] [Google Scholar]
  10. Garland D. L., Duglas-Tabor Y., Jimenez-Asensio J., Datiles M. B., Magno B. The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissection. Exp Eye Res. 1996 Mar;62(3):285–291. doi: 10.1006/exer.1996.0034. [DOI] [PubMed] [Google Scholar]
  11. Groenen P. J., van Dongen M. J., Voorter C. E., Bloemendal H., de Jong W. W. Age-dependent deamidation of alpha B-crystallin. FEBS Lett. 1993 May 3;322(1):69–72. doi: 10.1016/0014-5793(93)81113-e. [DOI] [PubMed] [Google Scholar]
  12. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  13. Harding J. J. Conformational changes in human lens proteins in cataract. Biochem J. 1972 Aug;129(1):97–100. doi: 10.1042/bj1290097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harding J. J. Disulphide cross-linked protein of high molecular weight in human cataractous lens. Exp Eye Res. 1973 Nov 25;17(4):377–383. doi: 10.1016/0014-4835(73)90247-9. [DOI] [PubMed] [Google Scholar]
  15. Harding J. J., Egerton M., Harding R. S. Protection against cataract by aspirin, paracetamol and ibuprofen. Acta Ophthalmol (Copenh) 1989 Oct;67(5):518–524. doi: 10.1111/j.1755-3768.1989.tb04102.x. [DOI] [PubMed] [Google Scholar]
  16. Harding J. J., Rixon K. C. Carbamylation of lens proteins: a possible factor in cataractogenesis in some tropical countries. Exp Eye Res. 1980 Nov;31(5):567–571. doi: 10.1016/s0014-4835(80)80015-7. [DOI] [PubMed] [Google Scholar]
  17. Hasan A., Smith J. B., Qin W., Smith D. L. The reaction of bovine lens alpha A-crystallin with aspirin. Exp Eye Res. 1993 Jul;57(1):29–35. doi: 10.1006/exer.1993.1095. [DOI] [PubMed] [Google Scholar]
  18. Miesbauer L. R., Zhou X., Yang Z., Yang Z., Sun Y., Smith D. L., Smith J. B. Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem. 1994 Apr 29;269(17):12494–12502. [PubMed] [Google Scholar]
  19. Muchowski P. J., Bassuk J. A., Lubsen N. H., Clark J. I. Human alphaB-crystallin. Small heat shock protein and molecular chaperone. J Biol Chem. 1997 Jan 24;272(4):2578–2582. doi: 10.1074/jbc.272.4.2578. [DOI] [PubMed] [Google Scholar]
  20. Nagaraj R. H., Monnier V. M. Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose. Biochim Biophys Acta. 1992 Mar 5;1116(1):34–42. doi: 10.1016/0304-4165(92)90125-e. [DOI] [PubMed] [Google Scholar]
  21. Nagaraj R. H., Sell D. R., Prabhakaram M., Ortwerth B. J., Monnier V. M. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10257–10261. doi: 10.1073/pnas.88.22.10257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ortwerth B. J., Feather M. S., Olesen P. R. The precipitation and cross-linking of lens crystallins by ascorbic acid. Exp Eye Res. 1988 Jul;47(1):155–168. doi: 10.1016/0014-4835(88)90032-2. [DOI] [PubMed] [Google Scholar]
  23. Prabhakaram M., Ortwerth B. J. The glycation and cross-linking of isolated lens crystallins by ascorbic acid. Exp Eye Res. 1992 Sep;55(3):451–459. doi: 10.1016/0014-4835(92)90118-c. [DOI] [PubMed] [Google Scholar]
  24. Qin W., Smith J. B., Smith D. L. Reaction of aspirin with cysteinyl residues of lens gamma-crystallins: a mechanism for the proposed anti-cataract effect of aspirin. Biochim Biophys Acta. 1993 Apr 30;1181(2):103–110. doi: 10.1016/0925-4439(93)90098-l. [DOI] [PubMed] [Google Scholar]
  25. Rao G. N., Cotlier E. Aspirin prevents the nonenzymatic glycosylation and carbamylation of the human eye lens crystallins in vitro. Biochem Biophys Res Commun. 1988 Mar 30;151(3):991–996. doi: 10.1016/s0006-291x(88)80463-7. [DOI] [PubMed] [Google Scholar]
  26. Rao G. N., Lardis M. P., Cotlier E. Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation. Biochem Biophys Res Commun. 1985 May 16;128(3):1125–1132. doi: 10.1016/0006-291x(85)91057-5. [DOI] [PubMed] [Google Scholar]
  27. Raza K., Harding J. J. Non-enzymic modification of lens proteins by glucose and fructose: effects of ibuprofen. Exp Eye Res. 1991 Feb;52(2):205–212. doi: 10.1016/0014-4835(91)90260-l. [DOI] [PubMed] [Google Scholar]
  28. Riley M. L., Harding J. J. The reaction of malondialdehyde with lens proteins and the protective effect of aspirin. Biochim Biophys Acta. 1993 Oct 3;1158(2):107–112. doi: 10.1016/0304-4165(93)90003-q. [DOI] [PubMed] [Google Scholar]
  29. Riley M. L., Harding J. J. The reaction of methylglyoxal with human and bovine lens proteins. Biochim Biophys Acta. 1995 Jan 25;1270(1):36–43. doi: 10.1016/0925-4439(94)00069-3. [DOI] [PubMed] [Google Scholar]
  30. Swamy M. S., Tsai C., Abraham A., Abraham E. C. Glycation mediated lens crystallin aggregation and cross-linking by various sugars and sugar phosphates in vitro. Exp Eye Res. 1993 Feb;56(2):177–185. doi: 10.1006/exer.1993.1025. [DOI] [PubMed] [Google Scholar]
  31. Takemoto L. J. Differential phosphorylation of alpha-A crystallin in human lens of different age. Exp Eye Res. 1996 May;62(5):499–504. doi: 10.1006/exer.1996.0060. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES