Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1796–1801. doi: 10.1002/pro.5560070815

Efficient sequence analysis of the six gene products (7-74 kDa) from the Escherichia coli thiamin biosynthetic operon by tandem high-resolution mass spectrometry.

N L Kelleher 1, S V Taylor 1, D Grannis 1, C Kinsland 1, H J Chiu 1, T P Begley 1, F W McLafferty 1
PMCID: PMC2144080  PMID: 10082377

Abstract

The 10(5) resolving power and MS/MS capabilities of Fourier-transform mass spectrometry provide electrospray ionization mass spectra containing >100 molecular and fragment ion mass values of high accuracy. Applying these spectra to the detection and localization of errors and modifications in the DNA-derived sequences of proteins is illustrated with the thiCEFSGH thiamin biosynthesis operon from Escherichia coli. Direct fragmentation of the multiply-charged intact protein ions produces large fragment ions covering the entire sequence; further dissociation of these fragment ions provides information on their sequences. For ThiE (23 kDa), the entire sequence was verified in a single spectrum with an accurate (0.3 Da) molecular weight (Mr) value, with confirmation from MS/MS fragment masses. Those for ThiH (46 kDa) showed that the Mr value (1 Da error) represented the protein without the start Met residue. For ThiF (27 kDa), MS/MS localized a sequence discrepancy to a 34 residue peptide. The first 107 residues of ThiC (74 kDa) were shown to be correct, with C-terminal heterogeneity indicated. For ThiG (predicted Mr = 34 kDa), ESI/FTMS showed two components of 7,310.74 (ThiS) and 26,896.5 Da (ThiG); MS/MS uncovered three reading frame errors and a stop codon for the first protein. MS/MS ions are consistent with 68 fragments predicted by the corrected ThiS/ThiG DNA sequences.

Full Text

The Full Text of this article is available as a PDF (632.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blattner F. R., Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408–5417. doi: 10.1093/nar/21.23.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Little D. P., Speir J. P., Senko M. W., O'Connor P. B., McLafferty F. W. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem. 1994 Sep 15;66(18):2809–2815. doi: 10.1021/ac00090a004. [DOI] [PubMed] [Google Scholar]
  3. Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
  4. Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H., Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14440–14445. doi: 10.1073/pnas.93.25.14440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Taylor S. V., Kelleher N. L., Kinsland C., Chiu H. J., Costello C. A., Backstrom A. D., McLafferty F. W., Begley T. P. Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem. 1998 Jun 26;273(26):16555–16560. doi: 10.1074/jbc.273.26.16555. [DOI] [PubMed] [Google Scholar]
  6. Valaskovic G. A., Kelleher N. L., Little D. P., Aaserud D. J., McLafferty F. W. Attomole-sensitivity electrospray source for large-molecule mass spectrometry. Anal Chem. 1995 Oct 15;67(20):3802–3805. doi: 10.1021/ac00116a030. [DOI] [PubMed] [Google Scholar]
  7. Vander Horn P. B., Backstrom A. D., Stewart V., Begley T. P. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J Bacteriol. 1993 Feb;175(4):982–992. doi: 10.1128/jb.175.4.982-992.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Williams E. R. Tandem FTMS of Large Biomolecules. Anal Chem. 1998 Mar 1;70(5):179A–185A. doi: 10.1021/ac981773x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wilm M., Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem. 1996 Jan 1;68(1):1–8. doi: 10.1021/ac9509519. [DOI] [PubMed] [Google Scholar]
  10. Wood T. D., Chen L. H., White C. B., Babbitt P. C., Kenyon G. L., McLafferty F. W. Sequence verification of human creatine kinase (43 kDa) isozymes by high-resolution tandem mass spectrometry. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11451–11455. doi: 10.1073/pnas.92.25.11451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yates J. R., 3rd Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998 Jan;33(1):1–19. doi: 10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES