Abstract
The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer.
Full Text
The Full Text of this article is available as a PDF (996.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrigo A. P. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 1998 Jan;379(1):19–26. [PubMed] [Google Scholar]
- Caspers G. J., Leunissen J. A., de Jong W. W. The expanding small heat-shock protein family, and structure predictions of the conserved "alpha-crystallin domain". J Mol Evol. 1995 Mar;40(3):238–248. doi: 10.1007/BF00163229. [DOI] [PubMed] [Google Scholar]
- Chao C. C., Ma Y. S., Stadtman E. R. Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2969–2974. doi: 10.1073/pnas.94.7.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Q., Vierling E. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gen Genet. 1991 May;226(3):425–431. doi: 10.1007/BF00260655. [DOI] [PubMed] [Google Scholar]
- Fliss H., Weissbach H., Brot N. Oxidation of methionine residues in proteins of activated human neutrophils. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7160–7164. doi: 10.1073/pnas.80.23.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao J., Yin D. H., Yao Y., Sun H., Qin Z., Schöneich C., Williams T. D., Squier T. C. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J. 1998 Mar;74(3):1115–1134. doi: 10.1016/S0006-3495(98)77830-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellman S. H. On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry. 1991 Jul 9;30(27):6633–6636. doi: 10.1021/bi00241a001. [DOI] [PubMed] [Google Scholar]
- Gobom J., Mirgorodskaya E., Nordhoff E., Hojrup P., Roepstorff P. Use of vapor-phase acid hydrolysis for mass spectrometric peptide mapping and protein identification. Anal Chem. 1999 Mar 1;71(5):919–927. doi: 10.1021/ac981239p. [DOI] [PubMed] [Google Scholar]
- Groenen P. J., Merck K. B., de Jong W. W., Bloemendal H. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem. 1994 Oct 1;225(1):1–19. doi: 10.1111/j.1432-1033.1994.00001.x. [DOI] [PubMed] [Google Scholar]
- Härndahl U., Hall R. B., Osteryoung K. W., Vierling E., Bornman J. F., Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones. 1999 Jun;4(2):129–138. doi: 10.1379/1466-1268(1999)004<0129:tcshsp>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Härndahl U., Tufvesson E., Sundby C. The chloroplast small heat shock protein--purification and characterization of pea recombinant protein. Protein Expr Purif. 1998 Oct;14(1):87–96. doi: 10.1006/prep.1998.0921. [DOI] [PubMed] [Google Scholar]
- Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
- Keenan R. J., Freymann D. M., Walter P., Stroud R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell. 1998 Jul 24;94(2):181–191. doi: 10.1016/s0092-8674(00)81418-x. [DOI] [PubMed] [Google Scholar]
- Kim K. K., Kim R., Kim S. H. Crystal structure of a small heat-shock protein. Nature. 1998 Aug 6;394(6693):595–599. doi: 10.1038/29106. [DOI] [PubMed] [Google Scholar]
- Lee G. J., Pokala N., Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995 May 5;270(18):10432–10438. doi: 10.1074/jbc.270.18.10432. [DOI] [PubMed] [Google Scholar]
- Lee G. J., Roseman A. M., Saibil H. R., Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997 Feb 3;16(3):659–671. doi: 10.1093/emboj/16.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leroux M. R., Melki R., Gordon B., Batelier G., Candido E. P. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem. 1997 Sep 26;272(39):24646–24656. doi: 10.1074/jbc.272.39.24646. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036–15040. doi: 10.1073/pnas.93.26.15036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
- Mehlen P., Hickey E., Weber L. A., Arrigo A. P. Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells. Biochem Biophys Res Commun. 1997 Dec 8;241(1):187–192. doi: 10.1006/bbrc.1997.7635. [DOI] [PubMed] [Google Scholar]
- Mehlen P., Kretz-Remy C., Préville X., Arrigo A. P. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J. 1996 Jun 3;15(11):2695–2706. [PMC free article] [PubMed] [Google Scholar]
- Mehlen P., Mehlen A., Godet J., Arrigo A. P. hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem. 1997 Dec 12;272(50):31657–31665. doi: 10.1074/jbc.272.50.31657. [DOI] [PubMed] [Google Scholar]
- Meinke D. W., Cherry J. M., Dean C., Rounsley S. D., Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science. 1998 Oct 23;282(5389):662, 679-82. doi: 10.1126/science.282.5389.662. [DOI] [PubMed] [Google Scholar]
- Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
- Plater M. L., Goode D., Crabbe M. J. Effects of site-directed mutations on the chaperone-like activity of alphaB-crystallin. J Biol Chem. 1996 Nov 8;271(45):28558–28566. doi: 10.1074/jbc.271.45.28558. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sun H., Gao J., Ferrington D. A., Biesiada H., Williams T. D., Squier T. C. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry. 1999 Jan 5;38(1):105–112. doi: 10.1021/bi981295k. [DOI] [PubMed] [Google Scholar]
- Suzuki T. C., Krawitz D. C., Vierling E. The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol. 1998 Mar;116(3):1151–1161. doi: 10.1104/pp.116.3.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med. 1995 Jan;18(1):93–105. doi: 10.1016/0891-5849(94)00158-g. [DOI] [PubMed] [Google Scholar]
