Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2380–2391. doi: 10.1110/ps.8.11.2380

Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases.

G Martin 1, P Jenö 1, W Keller 1
PMCID: PMC2144201  PMID: 10595540

Abstract

We have identified regions in poly(A) polymerases that interact with ATP. Conditions were established for efficient cross-linking of recombinant bovine and yeast poly(A) polymerases to 8-azido-ATP. Mn2+ strongly stimulated this reaction due to a 50-fold lower Ki for 8-azido-ATP in the presence of Mn2+. Mutations of the highly conserved Asp residues 113, 115, and 167, critical for metal binding in the catalytic domain of bovine poly(A) polymerase, led to a strong reduction of cross-linking efficiency, and Mn2+ no longer stimulated the reaction. Sites of 8-azido-ATP cross-linking were mapped in different poly(A) polymerases by CNBr-cleavage and analysis of tryptic peptides by mass spectroscopy. The main cross-link in Schizosaccharomyces pombe poly(A) polymerase could be assigned to the peptide DLELSDNNLLK (amino acids 167-177). Database searches with sequences surrounding the cross-link site detected significant homologies to other nucleotidyltransferase families, suggesting a conservation of the nucleotide-binding fold among these families of enzymes. Mutations in the region of the "helical turn motif" (a domain binding the triphosphate moiety of the nucleotide) and in the suspected nucleotide-binding helix of bovine poly(A) polymerase impaired ATP binding and catalysis. The results indicate that ATP is bound in part by the helical turn motif and in part by a region that may be a structural analog to the fingers domain found in many polymerases.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aravind L., Koonin E. V. DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 1999 Apr 1;27(7):1609–1618. doi: 10.1093/nar/27.7.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Astatke M., Grindley N. D., Joyce C. M. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J Biol Chem. 1995 Jan 27;270(4):1945–1954. doi: 10.1074/jbc.270.4.1945. [DOI] [PubMed] [Google Scholar]
  4. Astatke M., Grindley N. D., Joyce C. M. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. J Mol Biol. 1998 Apr 24;278(1):147–165. doi: 10.1006/jmbi.1998.1672. [DOI] [PubMed] [Google Scholar]
  5. Ballantyne S., Bilger A., Astrom J., Virtanen A., Wickens M. Poly (A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA. 1995 Mar;1(1):64–78. [PMC free article] [PubMed] [Google Scholar]
  6. Brautigam C. A., Steitz T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol. 1998 Feb;8(1):54–63. doi: 10.1016/s0959-440x(98)80010-9. [DOI] [PubMed] [Google Scholar]
  7. Cao G. J., Sarkar N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10380–10384. doi: 10.1073/pnas.89.21.10380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castaño I. B., Brzoska P. M., Sadoff B. U., Chen H., Christman M. F. Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev. 1996 Oct 15;10(20):2564–2576. doi: 10.1101/gad.10.20.2564. [DOI] [PubMed] [Google Scholar]
  9. Cheng N., Merrill B. M., Painter G. R., Frick L. W., Furman P. A. Identification of the nucleotide binding site of HIV-1 reverse transcriptase using dTTP as a photoaffinity label. Biochemistry. 1993 Aug 3;32(30):7630–7634. doi: 10.1021/bi00081a005. [DOI] [PubMed] [Google Scholar]
  10. Colgan D. F., Manley J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 1997 Nov 1;11(21):2755–2766. doi: 10.1101/gad.11.21.2755. [DOI] [PubMed] [Google Scholar]
  11. Davies J. F., 2nd, Almassy R. J., Hostomska Z., Ferre R. A., Hostomsky Z. 2.3 A crystal structure of the catalytic domain of DNA polymerase beta. Cell. 1994 Mar 25;76(6):1123–1133. doi: 10.1016/0092-8674(94)90388-3. [DOI] [PubMed] [Google Scholar]
  12. Davis M. T., Stahl D. C., Hefta S. A., Lee T. D. A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures. Anal Chem. 1995 Dec 15;67(24):4549–4556. doi: 10.1021/ac00120a019. [DOI] [PubMed] [Google Scholar]
  13. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
  14. Doublié S., Ellenberger T. The mechanism of action of T7 DNA polymerase. Curr Opin Struct Biol. 1998 Dec;8(6):704–712. doi: 10.1016/s0959-440x(98)80089-4. [DOI] [PubMed] [Google Scholar]
  15. Doublié S., Tabor S., Long A. M., Richardson C. C., Ellenberger T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15;391(6664):251–258. doi: 10.1038/34593. [DOI] [PubMed] [Google Scholar]
  16. Evans R. K., Beach C. M., Coleman M. S. Photoaffinity labeling of terminal deoxynucleotidyl transferase. 2. Identification of peptides in the nucleotide binding domain. Biochemistry. 1989 Jan 24;28(2):713–720. doi: 10.1021/bi00428a045. [DOI] [PubMed] [Google Scholar]
  17. Gebauer F., Richter J. D. Cloning and characterization of a Xenopus poly(A) polymerase. Mol Cell Biol. 1995 Mar;15(3):1422–1430. doi: 10.1128/mcb.15.3.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gershon P. D., Ahn B. Y., Garfield M., Moss B. Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. Cell. 1991 Sep 20;66(6):1269–1278. doi: 10.1016/0092-8674(91)90048-4. [DOI] [PubMed] [Google Scholar]
  19. Hadidi A., Sagar Sethi V. Polyadenylate polymerase from cytoplasm and nuclei of N.I.H.-Swiss mouse embryos. Biochim Biophys Acta. 1976 Feb 18;425(1):95–109. doi: 10.1016/0005-2787(76)90219-7. [DOI] [PubMed] [Google Scholar]
  20. Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
  21. Ingle C. A., Kushner S. R. Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12926–12931. doi: 10.1073/pnas.93.23.12926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  23. Kaushik N., Pandey V. N., Modak M. J. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Biochemistry. 1996 Jun 4;35(22):7256–7266. doi: 10.1021/bi960537i. [DOI] [PubMed] [Google Scholar]
  24. Keller W., Minvielle-Sebastia L. A comparison of mammalian and yeast pre-mRNA 3'-end processing. Curr Opin Cell Biol. 1997 Jun;9(3):329–336. doi: 10.1016/s0955-0674(97)80004-x. [DOI] [PubMed] [Google Scholar]
  25. Kiefer J. R., Mao C., Hansen C. J., Basehore S. L., Hogrefe H. H., Braman J. C., Beese L. S. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. Structure. 1997 Jan 15;5(1):95–108. doi: 10.1016/s0969-2126(97)00169-x. [DOI] [PubMed] [Google Scholar]
  26. Li Y., Korolev S., Waksman G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998 Dec 15;17(24):7514–7525. doi: 10.1093/emboj/17.24.7514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lingner J., Kellermann J., Keller W. Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature. 1991 Dec 12;354(6353):496–498. doi: 10.1038/354496a0. [DOI] [PubMed] [Google Scholar]
  28. Manley J. L., Takagaki Y. The end of the message--another link between yeast and mammals. Science. 1996 Nov 29;274(5292):1481–1482. doi: 10.1126/science.274.5292.1481. [DOI] [PubMed] [Google Scholar]
  29. Martin G., Keller W. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 1996 May 15;15(10):2593–2603. [PMC free article] [PubMed] [Google Scholar]
  30. Mikaelian I., Sergeant A. A general and fast method to generate multiple site directed mutations. Nucleic Acids Res. 1992 Jan 25;20(2):376–376. doi: 10.1093/nar/20.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nikodem V., Fresco J. R. Protein fingerprinting by SDS-gel electrophoresis after partial fragmentation with CNBr. Anal Biochem. 1979 Sep 1;97(2):382–386. doi: 10.1016/0003-2697(79)90089-7. [DOI] [PubMed] [Google Scholar]
  32. Ohnacker M., Minvielle-Sebastia L., Keller W. The Schizosaccharomyces pombe pla1 gene encodes a poly(A) polymerase and can functionally replace its Saccharomyces cerevisiae homologue. Nucleic Acids Res. 1996 Jul 1;24(13):2585–2591. doi: 10.1093/nar/24.13.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
  34. Pedersen L. C., Benning M. M., Holden H. M. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry. 1995 Oct 17;34(41):13305–13311. doi: 10.1021/bi00041a005. [DOI] [PubMed] [Google Scholar]
  35. Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
  36. Ploug M., Jensen A. L., Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. doi: 10.1016/0003-2697(89)90390-4. [DOI] [PubMed] [Google Scholar]
  37. Polesky A. H., Steitz T. A., Grindley N. D., Joyce C. M. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 1990 Aug 25;265(24):14579–14591. [PubMed] [Google Scholar]
  38. Potter R. L., Haley B. E. Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: techniques and applications. Methods Enzymol. 1983;91:613–633. doi: 10.1016/s0076-6879(83)91054-6. [DOI] [PubMed] [Google Scholar]
  39. Raabe T., Bollum F. J., Manley J. L. Primary structure and expression of bovine poly(A) polymerase. Nature. 1991 Sep 19;353(6341):229–234. doi: 10.1038/353229a0. [DOI] [PubMed] [Google Scholar]
  40. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  41. Rush J., Konigsberg W. H. Photoaffinity labeling of the Klenow fragment with 8-azido-dATP. J Biol Chem. 1990 Mar 25;265(9):4821–4827. [PubMed] [Google Scholar]
  42. Sakon J., Liao H. H., Kanikula A. M., Benning M. M., Rayment I., Holden H. M. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry. 1993 Nov 16;32(45):11977–11984. doi: 10.1021/bi00096a006. [DOI] [PubMed] [Google Scholar]
  43. Salvucci M. E., Chavan A. J., Haley B. E. Identification of peptides from the adenine binding domains of ATP and AMP in adenylate kinase: isolation of photoaffinity-labeled peptides by metal chelate chromatography. Biochemistry. 1992 May 12;31(18):4479–4487. doi: 10.1021/bi00133a014. [DOI] [PubMed] [Google Scholar]
  44. Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
  45. Sawaya M. R., Prasad R., Wilson S. H., Kraut J., Pelletier H. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry. 1997 Sep 16;36(37):11205–11215. doi: 10.1021/bi9703812. [DOI] [PubMed] [Google Scholar]
  46. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  47. Srivastava D. K., Evans R. K., Kumar A., Beard W. A., Wilson S. H. dNTP binding site in rat DNA polymerase beta revealed by controlled proteolysis and azido photoprobe cross-linking. Biochemistry. 1996 Mar 26;35(12):3728–3734. doi: 10.1021/bi952632h. [DOI] [PubMed] [Google Scholar]
  48. Steitz T. A., Smerdon S. J., Jäger J., Joyce C. M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science. 1994 Dec 23;266(5193):2022–2025. doi: 10.1126/science.7528445. [DOI] [PubMed] [Google Scholar]
  49. Tabor S., Richardson C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6339–6343. doi: 10.1073/pnas.92.14.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thuresson A. C., Aström J., Aström A., Grönvik K. O., Virtanen A. Multiple forms of poly(A) polymerases in human cells. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):979–983. doi: 10.1073/pnas.91.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wahle E., Keller W. The biochemistry of polyadenylation. Trends Biochem Sci. 1996 Jul;21(7):247–250. [PubMed] [Google Scholar]
  52. Wahle E., Martin G., Schiltz E., Keller W. Isolation and expression of cDNA clones encoding mammalian poly(A) polymerase. EMBO J. 1991 Dec;10(13):4251–4257. doi: 10.1002/j.1460-2075.1991.tb05003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wahle E. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3' end processing of messenger RNA precursors. J Biol Chem. 1991 Feb 15;266(5):3131–3139. [PubMed] [Google Scholar]
  54. Wahle E., Rüegsegger U. 3'-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev. 1999 Jun;23(3):277–295. doi: 10.1111/j.1574-6976.1999.tb00400.x. [DOI] [PubMed] [Google Scholar]
  55. Yue D., Maizels N., Weiner A. M. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA. 1996 Sep;2(9):895–908. [PMC free article] [PubMed] [Google Scholar]
  56. Yue D., Weiner A. M., Maizels N. The CCA-adding enzyme has a single active site. J Biol Chem. 1998 Nov 6;273(45):29693–29700. doi: 10.1074/jbc.273.45.29693. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES