Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2270–2280. doi: 10.1110/ps.8.11.2270

The solution structure of the anti-HIV chemokine vMIP-II.

A C Liwang 1, Z X Wang 1, Y Sun 1, S C Peiper 1, P J Liwang 1
PMCID: PMC2144214  PMID: 10595530

Abstract

We report the solution structure of the chemotactic cytokine (chemokine) vMIP-II. This protein has unique biological activities in that it blocks infection by several different human immunodeficiency virus type 1 (HIV-1) strains. This occurs because vMIP-II binds to a wide range of chemokine receptors, some of which are used by HJV to gain cell entry. vMIP-II is a monomeric protein, unlike most members of the chemokine family, and its structure consists of a disordered N-terminus, followed by a helical turn (Gln25-Leu27), which leads into the first strand of a three-stranded antiparallel beta-sheet (Ser29-Thr34; Gly42-Thr47; Gln52-Asp56). Following the sheet is a C-terminal alpha-helix, which extends from residue Asp60 until Gln68. The final five residues beyond the C-terminal helix (Pro70-Arg74) are in an extended conformation, but several of these C-terminal residues contact the first beta-strand. The structure of vMIP-II is compared to other chemokines that also block infection by HIV-1, and the structural basis of its lack of ability to form a dimer is discussed.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998 Apr 9;392(6676):565–568. doi: 10.1038/33340. [DOI] [PubMed] [Google Scholar]
  3. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  4. Bax A., Vuister G. W., Grzesiek S., Delaglio F., Wang A. C., Tschudin R., Zhu G. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 1994;239:79–105. doi: 10.1016/s0076-6879(94)39004-5. [DOI] [PubMed] [Google Scholar]
  5. Bazan J. F., Bacon K. B., Hardiman G., Wang W., Soo K., Rossi D., Greaves D. R., Zlotnik A., Schall T. J. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997 Feb 13;385(6617):640–644. doi: 10.1038/385640a0. [DOI] [PubMed] [Google Scholar]
  6. Bewley C. A., Gustafson K. R., Boyd M. R., Covell D. G., Bax A., Clore G. M., Gronenborn A. M. Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol. 1998 Jul;5(7):571–578. doi: 10.1038/828. [DOI] [PubMed] [Google Scholar]
  7. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996 Aug 29;382(6594):829–833. doi: 10.1038/382829a0. [DOI] [PubMed] [Google Scholar]
  8. Boshoff C., Endo Y., Collins P. D., Takeuchi Y., Reeves J. D., Schweickart V. L., Siani M. A., Sasaki T., Williams T. J., Gray P. W. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science. 1997 Oct 10;278(5336):290–294. doi: 10.1126/science.278.5336.290. [DOI] [PubMed] [Google Scholar]
  9. Burrows S. D., Doyle M. L., Murphy K. P., Franklin S. G., White J. R., Brooks I., McNulty D. E., Scott M. O., Knutson J. R., Porter D. Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry. 1994 Nov 1;33(43):12741–12745. doi: 10.1021/bi00209a002. [DOI] [PubMed] [Google Scholar]
  10. Chung C. W., Cooke R. M., Proudfoot A. E., Wells T. N. The three-dimensional solution structure of RANTES. Biochemistry. 1995 Jul 25;34(29):9307–9314. doi: 10.1021/bi00029a005. [DOI] [PubMed] [Google Scholar]
  11. Clark-Lewis I., Kim K. S., Rajarathnam K., Gong J. H., Dewald B., Moser B., Baggiolini M., Sykes B. D. Structure-activity relationships of chemokines. J Leukoc Biol. 1995 May;57(5):703–711. doi: 10.1002/jlb.57.5.703. [DOI] [PubMed] [Google Scholar]
  12. Clore G. M., Appella E., Yamada M., Matsushima K., Gronenborn A. M. Three-dimensional structure of interleukin 8 in solution. Biochemistry. 1990 Feb 20;29(7):1689–1696. doi: 10.1021/bi00459a004. [DOI] [PubMed] [Google Scholar]
  13. Clore G. M., Gronenborn A. M. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 1998 Jan;16(1):22–34. doi: 10.1016/S0167-7799(97)01135-9. [DOI] [PubMed] [Google Scholar]
  14. Clore G. M., Gronenborn A. M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science. 1991 Jun 7;252(5011):1390–1399. doi: 10.1126/science.2047852. [DOI] [PubMed] [Google Scholar]
  15. Combadiere C., Ahuja S. K., Tiffany H. L., Murphy P. M. Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol. 1996 Jul;60(1):147–152. doi: 10.1002/jlb.60.1.147. [DOI] [PubMed] [Google Scholar]
  16. Crump M. P., Gong J. H., Loetscher P., Rajarathnam K., Amara A., Arenzana-Seisdedos F., Virelizier J. L., Baggiolini M., Sykes B. D., Clark-Lewis I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 1997 Dec 1;16(23):6996–7007. doi: 10.1093/emboj/16.23.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Crump M. P., Rajarathnam K., Kim K. S., Clark-Lewis I., Sykes B. D. Solution structure of eotaxin, a chemokine that selectively recruits eosinophils in allergic inflammation. J Biol Chem. 1998 Aug 28;273(35):22471–22479. doi: 10.1074/jbc.273.35.22471. [DOI] [PubMed] [Google Scholar]
  18. Dealwis C., Fernandez E. J., Thompson D. A., Simon R. J., Siani M. A., Lolis E. Crystal structure of chemically synthesized [N33A] stromal cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6941–6946. doi: 10.1073/pnas.95.12.6941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
  20. Doms R. W., Peiper S. C. Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology. 1997 Sep 1;235(2):179–190. doi: 10.1006/viro.1997.8703. [DOI] [PubMed] [Google Scholar]
  21. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. doi: 10.1038/381667a0. [DOI] [PubMed] [Google Scholar]
  22. Fairbrother W. J., Reilly D., Colby T. J., Hesselgesser J., Horuk R. The solution structure of melanoma growth stimulating activity. J Mol Biol. 1994 Sep 23;242(3):252–270. doi: 10.1006/jmbi.1994.1577. [DOI] [PubMed] [Google Scholar]
  23. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  24. Garrett D. S., Kuszewski J., Hancock T. J., Lodi P. J., Vuister G. W., Gronenborn A. M., Clore G. M. The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR. J Magn Reson B. 1994 May;104(1):99–103. doi: 10.1006/jmrb.1994.1061. [DOI] [PubMed] [Google Scholar]
  25. Gong J. H., Clark-Lewis I. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J Exp Med. 1995 Feb 1;181(2):631–640. doi: 10.1084/jem.181.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gong J. H., Uguccioni M., Dewald B., Baggiolini M., Clark-Lewis I. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem. 1996 May 3;271(18):10521–10527. doi: 10.1074/jbc.271.18.10521. [DOI] [PubMed] [Google Scholar]
  27. Graham G. J., MacKenzie J., Lowe S., Tsang M. L., Weatherbee J. A., Issacson A., Medicherla J., Fang F., Wilkinson P. C., Pragnell I. B. Aggregation of the chemokine MIP-1 alpha is a dynamic and reversible phenomenon. Biochemical and biological analyses. J Biol Chem. 1994 Feb 18;269(7):4974–4978. [PubMed] [Google Scholar]
  28. Graham G. J., Wilkinson P. C., Nibbs R. J., Lowe S., Kolset S. O., Parker A., Freshney M. G., Tsang M. L., Pragnell I. B. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site. EMBO J. 1996 Dec 2;15(23):6506–6515. [PMC free article] [PubMed] [Google Scholar]
  29. Grasberger B. L., Gronenborn A. M., Clore G. M. Analysis of the backbone dynamics of interleukin-8 by 15N relaxation measurements. J Mol Biol. 1993 Mar 20;230(2):364–372. doi: 10.1006/jmbi.1993.1152. [DOI] [PubMed] [Google Scholar]
  30. Grzesiek S., Vuister G. W., Bax A. A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J Biomol NMR. 1993 Jul;3(4):487–493. doi: 10.1007/BF00176014. [DOI] [PubMed] [Google Scholar]
  31. Hadley T. J., Peiper S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood. 1997 May 1;89(9):3077–3091. [PubMed] [Google Scholar]
  32. Handel T. M., Domaille P. J. Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry. 1996 May 28;35(21):6569–6584. doi: 10.1021/bi9602270. [DOI] [PubMed] [Google Scholar]
  33. Hanzawa H., Haruyama H., Konishi K., Watanabe K., Tsurufuji S. Solution structure of CINC/Gro investigated by heteronuclear NMR. J Biochem. 1998 Jan;123(1):62–70. doi: 10.1093/oxfordjournals.jbchem.a021917. [DOI] [PubMed] [Google Scholar]
  34. Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
  35. Hoogewerf A. J., Kuschert G. S., Proudfoot A. E., Borlat F., Clark-Lewis I., Power C. A., Wells T. N. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry. 1997 Nov 4;36(44):13570–13578. doi: 10.1021/bi971125s. [DOI] [PubMed] [Google Scholar]
  36. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  37. Kelner G. S., Kennedy J., Bacon K. B., Kleyensteuber S., Largaespada D. A., Jenkins N. A., Copeland N. G., Bazan J. F., Moore K. W., Schall T. J. Lymphotactin: a cytokine that represents a new class of chemokine. Science. 1994 Nov 25;266(5189):1395–1399. doi: 10.1126/science.7973732. [DOI] [PubMed] [Google Scholar]
  38. Kim K. S., Clark-Lewis I., Sykes B. D. Solution structure of GRO/melanoma growth stimulatory activity determined by 1H NMR spectroscopy. J Biol Chem. 1994 Dec 30;269(52):32909–32915. [PubMed] [Google Scholar]
  39. Kim K. S., Rajarathnam K., Clark-Lewis I., Sykes B. D. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett. 1996 Oct 21;395(2-3):277–282. doi: 10.1016/0014-5793(96)01024-1. [DOI] [PubMed] [Google Scholar]
  40. Kledal T. N., Rosenkilde M. M., Coulin F., Simmons G., Johnsen A. H., Alouani S., Power C. A., Lüttichau H. R., Gerstoft J., Clapham P. R. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science. 1997 Sep 12;277(5332):1656–1659. doi: 10.1126/science.277.5332.1656. [DOI] [PubMed] [Google Scholar]
  41. Koopmann W., Krangel M. S. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. J Biol Chem. 1997 Apr 11;272(15):10103–10109. doi: 10.1074/jbc.272.15.10103. [DOI] [PubMed] [Google Scholar]
  42. Kuboniwa H., Grzesiek S., Delaglio F., Bax A. Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J Biomol NMR. 1994 Nov;4(6):871–878. doi: 10.1007/BF00398416. [DOI] [PubMed] [Google Scholar]
  43. Kuszewski J., Gronenborn A. M., Clore G. M. Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. J Magn Reson. 1997 Mar;125(1):171–177. doi: 10.1006/jmre.1997.1116. [DOI] [PubMed] [Google Scholar]
  44. Kuszewski J., Gronenborn A. M., Clore G. M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 1996 Jun;5(6):1067–1080. doi: 10.1002/pro.5560050609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kuszewski J., Nilges M., Brünger A. T. Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. J Biomol NMR. 1992 Jan;2(1):33–56. doi: 10.1007/BF02192799. [DOI] [PubMed] [Google Scholar]
  46. Laurence J. S., LiWang A. C., LiWang P. J. Effect of N-terminal truncation and solution conditions on chemokine dimer stability: nuclear magnetic resonance structural analysis of macrophage inflammatory protein 1 beta mutants. Biochemistry. 1998 Jun 30;37(26):9346–9354. doi: 10.1021/bi980329l. [DOI] [PubMed] [Google Scholar]
  47. Leong S. R., Lowman H. B., Liu J., Shire S., Deforge L. E., Gillece-Castro B. L., McDowell R., Hébert C. A. IL-8 single-chain homodimers and heterodimers: interactions with chemokine receptors CXCR1, CXCR2, and DARC. Protein Sci. 1997 Mar;6(3):609–617. doi: 10.1002/pro.5560060310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. LiWang A. C., Cao J. J., Zheng H., Lu Z., Peiper S. C., LiWang P. J. Dynamics study on the anti-human immunodeficiency virus chemokine viral macrophage-inflammatory protein-II (VMIP-II) reveals a fully monomeric protein. Biochemistry. 1999 Jan 5;38(1):442–453. doi: 10.1021/bi9812726. [DOI] [PubMed] [Google Scholar]
  49. Lodi P. J., Garrett D. S., Kuszewski J., Tsang M. L., Weatherbee J. A., Leonard W. J., Gronenborn A. M., Clore G. M. High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science. 1994 Mar 25;263(5154):1762–1767. doi: 10.1126/science.8134838. [DOI] [PubMed] [Google Scholar]
  50. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  51. Mayo K. H., Roongta V., Ilyina E., Milius R., Barker S., Quinlan C., La Rosa G., Daly T. J. NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer. Biochemistry. 1995 Sep 12;34(36):11399–11409. doi: 10.1021/bi00036a012. [DOI] [PubMed] [Google Scholar]
  52. Meunier S., Bernassau J. M., Guillemot J. C., Ferrara P., Darbon H. Determination of the three-dimensional structure of CC chemokine monocyte chemoattractant protein 3 by 1H two-dimensional NMR spectroscopy. Biochemistry. 1997 Apr 15;36(15):4412–4422. doi: 10.1021/bi9627929. [DOI] [PubMed] [Google Scholar]
  53. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  54. Mizoue L. S., Bazan J. F., Johnson E. C., Handel T. M. Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry. 1999 Feb 2;38(5):1402–1414. doi: 10.1021/bi9820614. [DOI] [PubMed] [Google Scholar]
  55. Moore P. S., Boshoff C., Weiss R. A., Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science. 1996 Dec 6;274(5293):1739–1744. doi: 10.1126/science.274.5293.1739. [DOI] [PubMed] [Google Scholar]
  56. Moser B., Dewald B., Barella L., Schumacher C., Baggiolini M., Clark-Lewis I. Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem. 1993 Apr 5;268(10):7125–7128. [PubMed] [Google Scholar]
  57. Murphy P. M., Tiffany H. L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1280–1283. doi: 10.1126/science.1891716. [DOI] [PubMed] [Google Scholar]
  58. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  59. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  60. Oberlin E., Amara A., Bachelerie F., Bessia C., Virelizier J. L., Arenzana-Seisdedos F., Schwartz O., Heard J. M., Clark-Lewis I., Legler D. F. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996 Aug 29;382(6594):833–835. doi: 10.1038/382833a0. [DOI] [PubMed] [Google Scholar]
  61. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  62. Paavola C. D., Hemmerich S., Grunberger D., Polsky I., Bloom A., Freedman R., Mulkins M., Bhakta S., McCarley D., Wiesent L. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem. 1998 Dec 11;273(50):33157–33165. doi: 10.1074/jbc.273.50.33157. [DOI] [PubMed] [Google Scholar]
  63. Pakianathan D. R., Kuta E. G., Artis D. R., Skelton N. J., Hébert C. A. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry. 1997 Aug 12;36(32):9642–9648. doi: 10.1021/bi970593z. [DOI] [PubMed] [Google Scholar]
  64. Paolini J. F., Willard D., Consler T., Luther M., Krangel M. S. The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations. J Immunol. 1994 Sep 15;153(6):2704–2717. [PubMed] [Google Scholar]
  65. Rajarathnam K., Kay C. M., Dewald B., Wolf M., Baggiolini M., Clark-Lewis I., Sykes B. D. Neutrophil-activating peptide-2 and melanoma growth-stimulatory activity are functional as monomers for neutrophil activation. J Biol Chem. 1997 Jan 17;272(3):1725–1729. doi: 10.1074/jbc.272.3.1725. [DOI] [PubMed] [Google Scholar]
  66. Rajarathnam K., Sykes B. D., Kay C. M., Dewald B., Geiser T., Baggiolini M., Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science. 1994 Apr 1;264(5155):90–92. doi: 10.1126/science.8140420. [DOI] [PubMed] [Google Scholar]
  67. Raport C. J., Gosling J., Schweickart V. L., Gray P. W., Charo I. F. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem. 1996 Jul 19;271(29):17161–17166. doi: 10.1074/jbc.271.29.17161. [DOI] [PubMed] [Google Scholar]
  68. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  69. Rollins B. J. Chemokines. Blood. 1997 Aug 1;90(3):909–928. [PubMed] [Google Scholar]
  70. Samson M., Labbe O., Mollereau C., Vassart G., Parmentier M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry. 1996 Mar 19;35(11):3362–3367. doi: 10.1021/bi952950g. [DOI] [PubMed] [Google Scholar]
  71. Schall T. J. Biology of the RANTES/SIS cytokine family. Cytokine. 1991 May;3(3):165–183. doi: 10.1016/1043-4666(91)90013-4. [DOI] [PubMed] [Google Scholar]
  72. Schraufstätter I. U., Ma M., Oades Z. G., Barritt D. S., Cochrane C. G. The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem. 1995 May 5;270(18):10428–10431. doi: 10.1074/jbc.270.18.10428. [DOI] [PubMed] [Google Scholar]
  73. Shao W., Fernandez E., Wilken J., Thompson D. A., Siani M. A., West J., Lolis E., Schweitzer B. I. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II. FEBS Lett. 1998 Dec 11;441(1):77–82. doi: 10.1016/s0014-5793(98)01520-8. [DOI] [PubMed] [Google Scholar]
  74. Shao W., Jerva L. F., West J., Lolis E., Schweitzer B. I. Solution structure of murine macrophage inflammatory protein-2. Biochemistry. 1998 Jun 9;37(23):8303–8313. doi: 10.1021/bi980112r. [DOI] [PubMed] [Google Scholar]
  75. Simmons G., Clapham P. R., Picard L., Offord R. E., Rosenkilde M. M., Schwartz T. W., Buser R., Wells T. N., Proudfoot A. E. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997 Apr 11;276(5310):276–279. doi: 10.1126/science.276.5310.276. [DOI] [PubMed] [Google Scholar]
  76. Skelton N. J., Aspiras F., Ogez J., Schall T. J. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry. 1995 Apr 25;34(16):5329–5342. doi: 10.1021/bi00016a004. [DOI] [PubMed] [Google Scholar]
  77. Sozzani S., Luini W., Bianchi G., Allavena P., Wells T. N., Napolitano M., Bernardini G., Vecchi A., D'Ambrosio D., Mazzeo D. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood. 1998 Dec 1;92(11):4036–4039. [PubMed] [Google Scholar]
  78. Tanaka Y., Adams D. H., Hubscher S., Hirano H., Siebenlist U., Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature. 1993 Jan 7;361(6407):79–82. doi: 10.1038/361079a0. [DOI] [PubMed] [Google Scholar]
  79. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Wagner L., Yang O. O., Garcia-Zepeda E. A., Ge Y., Kalams S. A., Walker B. D., Pasternack M. S., Luster A. D. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature. 1998 Feb 26;391(6670):908–911. doi: 10.1038/36129. [DOI] [PubMed] [Google Scholar]
  81. Weber M., Uguccioni M., Baggiolini M., Clark-Lewis I., Dahinden C. A. Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. J Exp Med. 1996 Feb 1;183(2):681–685. doi: 10.1084/jem.183.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Wells T. N., Power C. A., Lusti-Narasimhan M., Hoogewerf A. J., Cooke R. M., Chung C. W., Peitsch M. C., Proudfoot A. E. Selectivity and antagonism of chemokine receptors. J Leukoc Biol. 1996 Jan;59(1):53–60. doi: 10.1002/jlb.59.1.53. [DOI] [PubMed] [Google Scholar]
  83. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  84. Zhang X., Chen L., Bancroft D. P., Lai C. K., Maione T. E. Crystal structure of recombinant human platelet factor 4. Biochemistry. 1994 Jul 12;33(27):8361–8366. doi: 10.1021/bi00193a025. [DOI] [PubMed] [Google Scholar]
  85. Zhang Y., Rollins B. J. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Mol Cell Biol. 1995 Sep;15(9):4851–4855. doi: 10.1128/mcb.15.9.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES