Abstract
The accelerated pace of genomic sequencing has increased the demand for structural models of gene products. Improved quantitative methods are needed to study the many systems (e.g., macromolecular assemblies) for which data are scarce. Here, we describe a new molecular dynamics method for protein structure determination and molecular modeling. An energy function, or database potential, is derived from distributions of interatomic distances obtained from a database of known structures. X-ray crystal structures are refined by molecular dynamics with the new energy function replacing the Van der Waals potential. Compared to standard methods, this method improved the atomic positions, interatomic distances, and side-chain dihedral angles of structures randomized to mimic the early stages of refinement. The greatest enhancement in side-chain placement was observed for groups that are characteristically buried. More accurate calculated model phases will follow from improved interatomic distances. Details usually seen only in high-resolution refinements were improved, as is shown by an R-factor analysis. The improvements were greatest when refinements were carried out using X-ray data truncated at 3.5 A. The database potential should therefore be a valuable tool for determining X-ray structures, especially when only low-resolution data are available.
Full Text
The Full Text of this article is available as a PDF (425.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
- Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Thornton J. M. Potential energy functions for threading. Curr Opin Struct Biol. 1996 Apr;6(2):210–216. doi: 10.1016/s0959-440x(96)80076-5. [DOI] [PubMed] [Google Scholar]
- Minor D. L., Jr, Kim P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature. 1996 Apr 25;380(6576):730–734. doi: 10.1038/380730a0. [DOI] [PubMed] [Google Scholar]
- Rice L. M., Brünger A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins. 1994 Aug;19(4):277–290. doi: 10.1002/prot.340190403. [DOI] [PubMed] [Google Scholar]
- Rojnuckarin A., Subramaniam S. Knowledge-based interaction potentials for proteins. Proteins. 1999 Jul 1;36(1):54–67. doi: 10.1002/(sici)1097-0134(19990701)36:1<54::aid-prot5>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Schutt C. E. Muscle regulation. Movement on the Aufbaubahn. 1987 Feb 26-Mar 4Nature. 325(6107):757–758. doi: 10.1038/325757a0. [DOI] [PubMed] [Google Scholar]
- Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
- Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
- Sánchez R., Sali A. Advances in comparative protein-structure modelling. Curr Opin Struct Biol. 1997 Apr;7(2):206–214. doi: 10.1016/s0959-440x(97)80027-9. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Waldo G., Peat T. S., Newman J. M., Chu K., Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci. 1998 Sep;7(9):1851–1856. doi: 10.1002/pro.5560070901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tronrud D. E. TNT refinement package. Methods Enzymol. 1997;277:306–319. doi: 10.1016/s0076-6879(97)77017-4. [DOI] [PubMed] [Google Scholar]
- Wall M. E., Clarage J. B., Phillips G. N. Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure. 1997 Dec 15;5(12):1599–1612. doi: 10.1016/s0969-2126(97)00308-0. [DOI] [PubMed] [Google Scholar]
- Word J. M., Lovell S. C., Richardson J. S., Richardson D. C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol. 1999 Jan 29;285(4):1735–1747. doi: 10.1006/jmbi.1998.2401. [DOI] [PubMed] [Google Scholar]