Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2734–2741. doi: 10.1110/ps.8.12.2734

Robustness of protein folding kinetics to surface hydrophobic substitutions.

H Gu 1, N Doshi 1, D E Kim 1, K T Simons 1, J V Santiago 1, S Nauli 1, D Baker 1
PMCID: PMC2144221  PMID: 10631990

Abstract

We use both combinatorial and site-directed mutagenesis to explore the consequences of surface hydrophobic substitutions for the folding of two small single domain proteins, the src SH3 domain, and the IgG binding domain of Peptostreptococcal protein L. We find that in almost every case, destabilizing surface hydrophobic substitutions have much larger effects on the rate of unfolding than on the rate of folding, suggesting that nonnative hydrophobic interactions do not significantly interfere with the rate of core assembly.

Full Text

The Full Text of this article is available as a PDF (368.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agashe V. R., Shastry M. C., Udgaonkar J. B. Initial hydrophobic collapse in the folding of barstar. Nature. 1995 Oct 26;377(6551):754–757. doi: 10.1038/377754a0. [DOI] [PubMed] [Google Scholar]
  2. Alm E., Baker D. Matching theory and experiment in protein folding. Curr Opin Struct Biol. 1999 Apr;9(2):189–196. doi: 10.1016/S0959-440X(99)80027-X. [DOI] [PubMed] [Google Scholar]
  3. Alm E., Baker D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11305–11310. doi: 10.1073/pnas.96.20.11305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bystroff C., Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol. 1998 Aug 21;281(3):565–577. doi: 10.1006/jmbi.1998.1943. [DOI] [PubMed] [Google Scholar]
  5. Cordes M. H., Sauer R. T. Tolerance of a protein to multiple polar-to-hydrophobic surface substitutions. Protein Sci. 1999 Feb;8(2):318–325. doi: 10.1110/ps.8.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grantcharova V. P., Baker D. Folding dynamics of the src SH3 domain. Biochemistry. 1997 Dec 16;36(50):15685–15692. doi: 10.1021/bi971786p. [DOI] [PubMed] [Google Scholar]
  9. Grantcharova V. P., Riddle D. S., Santiago J. V., Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat Struct Biol. 1998 Aug;5(8):714–720. doi: 10.1038/1412. [DOI] [PubMed] [Google Scholar]
  10. Gu H., Kim D., Baker D. Contrasting roles for symmetrically disposed beta-turns in the folding of a small protein. J Mol Biol. 1997 Dec 12;274(4):588–596. doi: 10.1006/jmbi.1997.1374. [DOI] [PubMed] [Google Scholar]
  11. Gu H., Yi Q., Bray S. T., Riddle D. S., Shiau A. K., Baker D. A phage display system for studying the sequence determinants of protein folding. Protein Sci. 1995 Jun;4(6):1108–1117. doi: 10.1002/pro.5560040609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim D. E., Gu H., Baker D. The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4982–4986. doi: 10.1073/pnas.95.9.4982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim D. E., Yi Q., Gladwin S. T., Goldberg J. M., Baker D. The single helix in protein L is largely disrupted at the rate-limiting step in folding. J Mol Biol. 1998 Dec 4;284(3):807–815. doi: 10.1006/jmbi.1998.2200. [DOI] [PubMed] [Google Scholar]
  14. Pakula A. A., Sauer R. T. Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature. 1990 Mar 22;344(6264):363–364. doi: 10.1038/344363a0. [DOI] [PubMed] [Google Scholar]
  15. Predki P. F., Agrawal V., Brünger A. T., Regan L. Amino-acid substitutions in a surface turn modulate protein stability. Nat Struct Biol. 1996 Jan;3(1):54–58. doi: 10.1038/nsb0196-54. [DOI] [PubMed] [Google Scholar]
  16. Riddle D. S., Santiago J. V., Bray-Hall S. T., Doshi N., Grantcharova V. P., Yi Q., Baker D. Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Biol. 1997 Oct;4(10):805–809. doi: 10.1038/nsb1097-805. [DOI] [PubMed] [Google Scholar]
  17. Scalley M. L., Yi Q., Gu H., McCormack A., Yates J. R., 3rd, Baker D. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L. Biochemistry. 1997 Mar 18;36(11):3373–3382. doi: 10.1021/bi9625758. [DOI] [PubMed] [Google Scholar]
  18. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  19. Sosnick T. R., Mayne L., Englander S. W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins. 1996 Apr;24(4):413–426. doi: 10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  20. West M. W., Hecht M. H. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Sci. 1995 Oct;4(10):2032–2039. doi: 10.1002/pro.5560041008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES