Abstract
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
- Casaretto M., Spoden M., Diaconescu C., Gattner H. G., Zahn H., Brandenburg D., Wollmer A. Shortened insulin with enhanced in vitro potency. Biol Chem Hoppe Seyler. 1987 Jun;368(6):709–716. doi: 10.1515/bchm3.1987.368.1.709. [DOI] [PubMed] [Google Scholar]
- Chan B. L., Lisanti M. P., Rodriguez-Boulan E., Saltiel A. R. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science. 1988 Sep 23;241(4873):1670–1672. doi: 10.1126/science.241.4873.1670. [DOI] [PubMed] [Google Scholar]
- Crippen G. M. Distance constraints on macromolecular conformation. Int J Pept Protein Res. 1979 Mar;13(3):320–326. doi: 10.1111/j.1399-3011.1979.tb01886.x. [DOI] [PubMed] [Google Scholar]
- DeMeyts P., Bainco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem. 1976 Apr 10;251(7):1877–1888. [PubMed] [Google Scholar]
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol. 1991 Jul 20;220(2):425–433. doi: 10.1016/0022-2836(91)90022-x. [DOI] [PubMed] [Google Scholar]
- Frost S. C., Lane M. D. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem. 1985 Mar 10;260(5):2646–2652. [PubMed] [Google Scholar]
- Garrett T. P., McKern N. M., Lou M., Frenkel M. J., Bentley J. D., Lovrecz G. O., Elleman T. C., Cosgrove L. J., Ward C. W. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature. 1998 Jul 23;394(6691):395–399. doi: 10.1038/28668. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Shoelson S. E., Inouye K., Weiss M. A. Paradoxical structure and function in a mutant human insulin associated with diabetes mellitus. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):582–586. doi: 10.1073/pnas.90.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991 Nov 21;354(6350):238–241. doi: 10.1038/354238a0. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Shoelson S. E., Weiss M. A. Nonlocal structural perturbations in a mutant human insulin: sequential resonance assignment and 13C-isotope-aided 2D-NMR studies of [PheB24-->Gly]insulin with implications for receptor recognition. Biochemistry. 1992 Dec 1;31(47):11940–11951. doi: 10.1021/bi00162a037. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Weiss M. A. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry. 1991 Jun 4;30(22):5505–5515. doi: 10.1021/bi00236a025. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Weiss M. A. Toward the solution structure of human insulin: sequential 2D 1H NMR assignment of a des-pentapeptide analogue and comparison with crystal structure. Biochemistry. 1990 Nov 20;29(46):10545–10555. doi: 10.1021/bi00498a018. [DOI] [PubMed] [Google Scholar]
- Hubbard S. R., Wei L., Ellis L., Hendrickson W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994 Dec 22;372(6508):746–754. doi: 10.1038/372746a0. [DOI] [PubMed] [Google Scholar]
- Kaptein R., Boelens R., Scheek R. M., van Gunsteren W. F. Protein structures from NMR. Biochemistry. 1988 Jul 26;27(15):5389–5395. doi: 10.1021/bi00415a001. [DOI] [PubMed] [Google Scholar]
- Kristensen S. M., Jørgensen A. M., Led J. J., Balschmidt P., Hansen F. B. Proton nuclear magnetic resonance study of the B9(Asp) mutant of human insulin. Sequential assignment and secondary structure. J Mol Biol. 1991 Mar 5;218(1):221–231. doi: 10.1016/0022-2836(91)90886-b. [DOI] [PubMed] [Google Scholar]
- Kurapkat G., De Wolf E., Grötzinger J., Wollmer A. Inactive conformation of an insulin despite its wild-type sequence. Protein Sci. 1997 Mar;6(3):580–587. doi: 10.1002/pro.5560060307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurose T., Pashmforoush M., Yoshimasa Y., Carroll R., Schwartz G. P., Burke G. T., Katsoyannis P. G., Steiner D. F. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. Identification of a new insulin-binding domain in the insulin receptor. J Biol Chem. 1994 Nov 18;269(46):29190–29197. [PubMed] [Google Scholar]
- König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexycarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber. 1970;103(3):788–798. doi: 10.1002/cber.19701030319. [DOI] [PubMed] [Google Scholar]
- Lee J., Pilch P. F. The insulin receptor: structure, function, and signaling. Am J Physiol. 1994 Feb;266(2 Pt 1):C319–C334. doi: 10.1152/ajpcell.1994.266.2.C319. [DOI] [PubMed] [Google Scholar]
- Leyer S., Gattner H. G., Leithäuser M., Brandenburg D., Wollmer A., Höcker H. The role of the C-terminus of the insulin B-chain in modulating structural and functional properties of the hormone. Int J Pept Protein Res. 1995 Nov;46(5):397–407. doi: 10.1111/j.1399-3011.1995.tb01074.x. [DOI] [PubMed] [Google Scholar]
- Ludvigsen S., Olsen H. B., Kaarsholm N. C. A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol. 1998 May 29;279(1):1–7. doi: 10.1006/jmbi.1998.1801. [DOI] [PubMed] [Google Scholar]
- Ludvigsen S., Roy M., Thøgersen H., Kaarsholm N. C. High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr-->His, as determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1994 Jul 5;33(26):7998–8006. doi: 10.1021/bi00192a003. [DOI] [PubMed] [Google Scholar]
- Mirmira R. G., Nakagawa S. H., Tager H. S. Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J Biol Chem. 1991 Jan 25;266(3):1428–1436. [PubMed] [Google Scholar]
- Mirmira R. G., Tager H. S. Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. Importance of main chain conformation. J Biol Chem. 1989 Apr 15;264(11):6349–6354. [PubMed] [Google Scholar]
- Moody A. J., Stan M. A., Stan M., Gliemann J. A simple free fat cell bioassay for insulin. Horm Metab Res. 1974 Jan;6(1):12–16. doi: 10.1055/s-0028-1093895. [DOI] [PubMed] [Google Scholar]
- Murray-Rust J., McLeod A. N., Blundell T. L., Wood S. P. Structure and evolution of insulins: implications for receptor binding. Bioessays. 1992 May;14(5):325–331. doi: 10.1002/bies.950140507. [DOI] [PubMed] [Google Scholar]
- Nakagawa S. H., Tager H. S. Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry. 1992 Mar 31;31(12):3204–3214. doi: 10.1021/bi00127a023. [DOI] [PubMed] [Google Scholar]
- Nakagawa S. H., Tager H. S. Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. J Biol Chem. 1986 Jun 5;261(16):7332–7341. [PubMed] [Google Scholar]
- Olsen H. B., Ludvigsen S., Kaarsholm N. C. Solution structure of an engineered insulin monomer at neutral pH. Biochemistry. 1996 Jul 9;35(27):8836–8845. doi: 10.1021/bi960292+. [DOI] [PubMed] [Google Scholar]
- Pullen R. A., Lindsay D. G., Wood S. P., Tickle I. J., Blundell T. L., Wollmer A., Krail G., Brandenburg D., Zahn H., Gliemann J. Receptor-binding region of insulin. Nature. 1976 Feb 5;259(5542):369–373. doi: 10.1038/259369a0. [DOI] [PubMed] [Google Scholar]
- Scheek R. M., van Gunsteren W. F., Kaptein R. Molecular dynamics simulation techniques for determination of molecular structures from nuclear magnetic resonance data. Methods Enzymol. 1989;177:204–218. doi: 10.1016/0076-6879(89)77012-9. [DOI] [PubMed] [Google Scholar]
- Schwartz G. P., Burke G. T., Katsoyannis P. G. A highly potent insulin: des-(B26-B30)-[AspB10,TyrB25-NH2]insulin(human). Proc Natl Acad Sci U S A. 1989 Jan;86(2):458–461. doi: 10.1073/pnas.86.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz G. P., Burke G. T., Katsoyannis P. G. A superactive insulin: [B10-aspartic acid]insulin(human). Proc Natl Acad Sci U S A. 1987 Sep;84(18):6408–6411. doi: 10.1073/pnas.84.18.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoelson S. E., Lee J., Lynch C. S., Backer J. M., Pilch P. F. BpaB25 insulins. Photoactivatable analogues that quantitatively cross-link, radiolabel, and activate the insulin receptor. J Biol Chem. 1993 Feb 25;268(6):4085–4091. [PubMed] [Google Scholar]
- Spoden M., Gattner H. G., Zahn H., Brandenburg D. Structure-function relationships of des-(B26-B30)-insulin. Int J Pept Protein Res. 1995 Sep-Oct;46(3-4):221–227. doi: 10.1111/j.1399-3011.1995.tb00593.x. [DOI] [PubMed] [Google Scholar]
- Waxman E., Rusinova E., Hasselbacher C. A., Schwartz G. P., Laws W. R., Ross J. B. Determination of the tryptophan:tyrosine ratio in proteins. Anal Biochem. 1993 May 1;210(2):425–428. doi: 10.1006/abio.1993.1220. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
- Wood S. P., Blundell T. L., Wollmer A., Lazarus N. R., Neville R. W. The relation of conformation and association of insulin to receptor binding; x-ray and circular-dichroism studies on bovine and hystricomorph insulins. Eur J Biochem. 1975 Jul 15;55(3):531–542. doi: 10.1111/j.1432-1033.1975.tb02190.x. [DOI] [PubMed] [Google Scholar]
