Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Mar;8(3):518–528. doi: 10.1110/ps.8.3.518

Mapping cyclic nucleotide-induced conformational changes in cyclicAMP receptor protein by a protein footprinting technique using different chemical proteases.

N Baichoo 1, T Heyduk 1
PMCID: PMC2144282  PMID: 10091654

Abstract

CyclicAMP receptor protein (CRP) regulates transcription of numerous genes in Escherichia coli. Both cAMP and cGMP bind CRP, but only cAMP induces conformational changes that dramatically increase the specific DNA binding activity of the protein. We have shown previously that our protein footprinting technique is sensitive enough to detect conformational changes in CRP by cAMP [Baichoo N, Heyduk T. 1997. Biochemistry 36:10830-10836]. In this work, conformational changes in CRP induced by cAMP and cGMP binding were mapped and quantitatively analyzed by protein footprinting using iron complexed to diethylenetriaminepentaacetic acid ([Fe-DTPA]2-), iron complexed to ethylenediaminediacetic acid ([Fe-EDDA]), iron complexed to desferrioxamine mesylate ([Fe-HDFO]+), and copper complexed to o-phenanthroline ([(OP)2Cu]+) as proteases. These chemical proteases differ in size, charge, and hydrophobicity. Binding of cAMP to CRP resulted in changes in susceptibility to cleavage by all four proteases. Cleavage by [Fe-EDDA] and [Fe-DTPA]2- of CRP-cAMP detected hypersensitivities in the DNA-binding F alpha-helix, the interdomain hinge, and the ends of the C alpha-helix, which is involved in intersubunit interactions. [Fe-EDDA] and [Fe-DTPA]2- also detected reductions in cleavage in the D and E alpha-helices, which are involved in DNA recognition. Cleavage by [Fe-HDFO]+ of CRP-cAMP detected hypersensitivities in beta-strand 8, the B alpha-helix, as well as in parts of the F and C alpha-helices. [Fe-HDFO]+ also detected protections from cleavage in beta-strands 4 to 5 and their intervening loop, beta-strand 7, which is part of the nucleotide binding pocket, as well as in the D and E alpha-helices. Cleavage by [(OP)2Cu]+ of CRP-cAMP detected hypersensitivities in beta-strands 9 and 11 as well as in the D and E alpha-helices. [(OP)2Cu]+ also detected protections in the C alpha-helix , the interdomain hinge, and beta-strands 2-7. Binding of cGMP to CRP resulted in changes in susceptibility to cleavage only by [(OP)2Cu]+, which detected minor protections in beta-strands 3-7, the interdomain hinge, and the C alpha-helix. These results show that binding of cAMP causes structural changes in CRP in the nucleotide binding domain, the interdomain hinge, the DNA binding domain, and regions involved in intersubunit interaction. Structural changes induced by binding of cGMP appear to be very minor and confined to the nucleotide binding domain, the interdomain hinge, and regions involved in intersubunit interaction. Use of different cleaving agents in protein footprinting seems to give a more detailed picture of structural changes than the use of a single protease alone.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Ryu S., Garges S. Role of allosteric changes in cyclic AMP receptor protein function. Subcell Biochem. 1995;24:303–321. doi: 10.1007/978-1-4899-1727-0_10. [DOI] [PubMed] [Google Scholar]
  2. Angulo J. A., Krakow J. S. Effect of deoxyribopolymers and ribopolymers on the sensitivity of the cyclic-AMP receptor protein of Escherichia coli to proteolytic attack. Arch Biochem Biophys. 1985 Jan;236(1):11–16. doi: 10.1016/0003-9861(85)90600-9. [DOI] [PubMed] [Google Scholar]
  3. Baichoo N., Heyduk T. Mapping conformational changes in a protein: application of a protein footprinting technique to cAMP-induced conformational changes in cAMP receptor protein. Biochemistry. 1997 Sep 9;36(36):10830–10836. doi: 10.1021/bi970714v. [DOI] [PubMed] [Google Scholar]
  4. Bateman R. C., Jr, Youngblood W. W., Busby W. H., Jr, Kizer J. S. Nonenzymatic peptide alpha-amidation. Implications for a novel enzyme mechanism. J Biol Chem. 1985 Aug 5;260(16):9088–9091. [PubMed] [Google Scholar]
  5. Borg D. C., Schaich K. M. Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine. J Free Radic Biol Med. 1986;2(4):237–243. doi: 10.1016/s0748-5514(86)80004-6. [DOI] [PubMed] [Google Scholar]
  6. Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 1986;130:132–181. doi: 10.1016/0076-6879(86)30011-9. [DOI] [PubMed] [Google Scholar]
  7. Cheng X., Gonzalez M. L., Lee J. C. Energetics of intersubunit and intrasubunit interactions of Escherichia coli adenosine cyclic 3',5'-phosphate receptor protein. Biochemistry. 1993 Aug 17;32(32):8130–8139. doi: 10.1021/bi00083a011. [DOI] [PubMed] [Google Scholar]
  8. Cheng X., Kovac L., Lee J. C. Probing the mechanism of CRP activation by site-directed mutagenesis: the role of serine 128 in the allosteric pathway of cAMP receptor protein activation. Biochemistry. 1995 Aug 29;34(34):10816–10826. doi: 10.1021/bi00034a014. [DOI] [PubMed] [Google Scholar]
  9. Cheng X., Lee J. C. Interactive and dominant effects of residues 128 and 141 on cyclic nucleotide and DNA bindings in Escherichia coli cAMP receptor protein. J Biol Chem. 1998 Jan 9;273(2):705–712. doi: 10.1074/jbc.273.2.705. [DOI] [PubMed] [Google Scholar]
  10. DeGrazia H., Harman J. G., Tan G. S., Wartell R. M. Investigation of the cAMP receptor protein secondary structure by Raman spectroscopy. Biochemistry. 1990 Apr 10;29(14):3557–3562. doi: 10.1021/bi00466a019. [DOI] [PubMed] [Google Scholar]
  11. Ebright R. H., Le Grice S. F., Miller J. P., Krakow J. S. Analogs of cyclic AMP that elicit the biochemically defined conformational change in catabolite gene activator protein (CAP) but do not stimulate binding to DNA. J Mol Biol. 1985 Mar 5;182(1):91–107. doi: 10.1016/0022-2836(85)90030-0. [DOI] [PubMed] [Google Scholar]
  12. Eilen E., Krakow J. S. Cyclic AMP-mediated intersubunit disulfide crosslinking of the cyclic AMP receptor protein of Escherichia coli. J Mol Biol. 1977 Jul;114(1):47–60. doi: 10.1016/0022-2836(77)90282-0. [DOI] [PubMed] [Google Scholar]
  13. Ermácora M. R., Ledman D. W., Hellinga H. W., Hsu G. W., Fox R. O. Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residues. Biochemistry. 1994 Nov 22;33(46):13625–13641. doi: 10.1021/bi00250a013. [DOI] [PubMed] [Google Scholar]
  14. Fried M. G., Crothers D. M. Equilibrium studies of the cyclic AMP receptor protein-DNA interaction. J Mol Biol. 1984 Jan 25;172(3):241–262. doi: 10.1016/s0022-2836(84)80025-x. [DOI] [PubMed] [Google Scholar]
  15. Gallagher J., Zelenko O., Walts A. D., Sigman D. S. Protease activity of 1,10-phenanthroline-copper(I). Targeted scission of the catalytic site of carbonic anhydrase. Biochemistry. 1998 Feb 24;37(8):2096–2104. doi: 10.1021/bi971565j. [DOI] [PubMed] [Google Scholar]
  16. Garges S., Adhya S. Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations. J Bacteriol. 1988 Apr;170(4):1417–1422. doi: 10.1128/jb.170.4.1417-1422.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garges S., Adhya S. Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell. 1985 Jul;41(3):745–751. doi: 10.1016/s0092-8674(85)80055-6. [DOI] [PubMed] [Google Scholar]
  18. Heyduk E., Heyduk T. Mapping protein domains involved in macromolecular interactions: a novel protein footprinting approach. Biochemistry. 1994 Aug 16;33(32):9643–9650. doi: 10.1021/bi00198a033. [DOI] [PubMed] [Google Scholar]
  19. Heyduk T., Heyduk E., Severinov K., Tang H., Ebright R. H. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10162–10166. doi: 10.1073/pnas.93.19.10162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heyduk T., Lee J. C. Escherichia coli cAMP receptor protein: evidence for three protein conformational states with different promoter binding affinities. Biochemistry. 1989 Aug 22;28(17):6914–6924. doi: 10.1021/bi00443a021. [DOI] [PubMed] [Google Scholar]
  21. Hinds M. G., King R. W., Feeney J. 19F n.m.r. studies of conformational changes accompanying cyclic AMP binding to 3-fluorophenylalanine-containing cyclic AMP receptor protein from Escherichia coli. Biochem J. 1992 Oct 15;287(Pt 2):627–632. doi: 10.1042/bj2870627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim J., Adhya S., Garges S. Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9700–9704. doi: 10.1073/pnas.89.20.9700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  24. Krakow J. S., Pastan I. Cyclic adenosine monophosphate receptor: loss of cAMP-dependent DNA binding activity after proteolysis in the presence of cyclic adenosine monophosphate. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2529–2533. doi: 10.1073/pnas.70.9.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee B. J., Lee S. J., Hayashi F., Aiba H., Kyogoku Y. A nuclear magnetic resonance study of the cyclic AMP receptor protein (CRP): assignments of the NH protons of histidine and tryptophan residues and the effect of binding of cAMP to CRP. J Biochem. 1990 Feb;107(2):304–309. doi: 10.1093/oxfordjournals.jbchem.a123043. [DOI] [PubMed] [Google Scholar]
  26. McKay D. B., Weber I. T., Steitz T. A. Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP. J Biol Chem. 1982 Aug 25;257(16):9518–9524. [PubMed] [Google Scholar]
  27. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  28. Pampeno C., Krakow J. S. Cross-linking of the cAMP receptor protein of Escherichia coli by o-phenylenedimaleimide as a probe of conformation. Biochemistry. 1979 Apr 17;18(8):1519–1525. doi: 10.1021/bi00575a020. [DOI] [PubMed] [Google Scholar]
  29. Parkinson G., Wilson C., Gunasekera A., Ebright Y. W., Ebright R. H., Ebright R. E., Berman H. M. Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface. J Mol Biol. 1996 Jul 19;260(3):395–408. doi: 10.1006/jmbi.1996.0409. [DOI] [PubMed] [Google Scholar]
  30. Passner J. M., Steitz T. A. The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2843–2847. doi: 10.1073/pnas.94.7.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ryu S., Kim J., Adhya S., Garges S. Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):75–79. doi: 10.1073/pnas.90.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schaeffer F., Rimsky S., Spassky A. DNA-stacking interactions determine the sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion. J Mol Biol. 1996 Jul 26;260(4):523–539. doi: 10.1006/jmbi.1996.0419. [DOI] [PubMed] [Google Scholar]
  33. Schultz S. C., Shields G. C., Steitz T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 1991 Aug 30;253(5023):1001–1007. doi: 10.1126/science.1653449. [DOI] [PubMed] [Google Scholar]
  34. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  35. Sixl F., King R. W., Bracken M., Feeney J. 19F-n.m.r. studies of ligand binding to 5-fluorotryptophan- and 3-fluorotyrosine-containing cyclic AMP receptor protein from Escherichia coli. Biochem J. 1990 Mar 1;266(2):545–552. doi: 10.1042/bj2660545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takahashi M., Blazy B., Baudras A. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli. Biochemistry. 1980 Oct 28;19(22):5124–5130. doi: 10.1021/bi00563a029. [DOI] [PubMed] [Google Scholar]
  37. Tan G. S., Kelly P., Kim J., Wartell R. M. Comparison of cAMP receptor protein (CRP) and a cAMP-independent form of CRP by Raman spectroscopy and DNA binding. Biochemistry. 1991 May 21;30(20):5076–5080. doi: 10.1021/bi00234a034. [DOI] [PubMed] [Google Scholar]
  38. Weber I. T., Steitz T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. J Mol Biol. 1987 Nov 20;198(2):311–326. doi: 10.1016/0022-2836(87)90315-9. [DOI] [PubMed] [Google Scholar]
  39. Wu C. W., Wu F. Y. Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A temperature-jump study. Biochemistry. 1974 Jun 4;13(12):2573–2578. doi: 10.1021/bi00709a016. [DOI] [PubMed] [Google Scholar]
  40. Wu F. Y., Nath K., Wu C. W. Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A fluorescent probe study. Biochemistry. 1974 Jun 4;13(12):2567–2572. doi: 10.1021/bi00709a015. [DOI] [PubMed] [Google Scholar]
  41. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES