Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Mar;8(3):529–537. doi: 10.1110/ps.8.3.529

Domain exchange experiments in duck delta-crystallins: functional and evolutionary implications.

L M Sampaleanu 1, A R Davidson 1, C Graham 1, G J Wistow 1, P L Howell 1
PMCID: PMC2144284  PMID: 10091655

Abstract

Delta-crystallin, the major soluble protein component of the avian and reptilian eye lens, is homologous to the urea cycle enzyme argininosuccinate lyase (ASL). In duck lenses there are two delta crystallins, denoted delta1 and delta2. Duck delta2 is both a major structural protein of the lens and also the duck orthologue of ASL, an example of gene recruitment. Although 94% identical to delta2/ASL in the amino acid sequence, delta1 is enzymatically inactive. A series of hybrid proteins have been constructed to assess the role of each structural domain in the enzymatic mechanism. Five chimeras--221, 122, 121, 211, and 112, where the three numbers correspond to the three structural domains and the value of 1 or 2 represents the protein of origin, delta1 or delta2, respectively--were constructed and thermodynamically and kinetically analyzed. The kinetic analysis indicates that only domain 1 is crucial for restoring ASL activity to delta1 crystallin, and that amino acid substitutions in domain 2 may play a role in substrate binding. These results confirm the hypothesis that only one domain, domain 1, is responsible for the loss of catalytic activity in delta1. The thermodynamic characterization of human ASL (hASL) and duck delta1 and delta2 indicate that delta crystallins are slightly less stable than hASL, with the delta1 being the least stable. The deltaGs of unfolding are 57.25, 63.13, and 70.71 kcal mol(-1) for delta1, delta2, and hASL, respectively. This result was unexpected, and we speculate that delta crystallins have adapted to their structural role by adopting a slightly less stable conformation that might allow for enhanced protein-protein and protein-solvent interactions.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Abed M., Turner M. A., Vallée F., Simpson A., Slingsby C., Howell P. L. Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91. Biochemistry. 1997 Nov 18;36(46):14012–14022. doi: 10.1021/bi971407s. [DOI] [PubMed] [Google Scholar]
  2. Ahmad F., Bigelow C. C. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin. J Biol Chem. 1982 Nov 10;257(21):12935–12938. [PubMed] [Google Scholar]
  3. Allen D. L., Pielak G. J. Baseline length and automated fitting of denaturation data. Protein Sci. 1998 May;7(5):1262–1263. doi: 10.1002/pro.5560070524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbosa P., Wistow G. J., Cialkowski M., Piatigorsky J., O'Brien W. E. Expression of duck lens delta-crystallin cDNAs in yeast and bacterial hosts. Delta 2-crystallin is an active argininosuccinate lyase. J Biol Chem. 1991 Nov 25;266(33):22319–22322. [PubMed] [Google Scholar]
  5. Blanchard J. S., Cleland W. W. Use of isotope effects to deduce the chemical mechanism of fumarase. Biochemistry. 1980 Sep 16;19(19):4506–4513. doi: 10.1021/bi00560a019. [DOI] [PubMed] [Google Scholar]
  6. Bloemendal H., de Jong W. W. Lens proteins and their genes. Prog Nucleic Acid Res Mol Biol. 1991;41:259–281. doi: 10.1016/s0079-6603(08)60012-4. [DOI] [PubMed] [Google Scholar]
  7. Chiou S. H., Lee H. J., Chu H., Lai T. A., Chang G. G. Screening and kinetic analysis of delta-crystallins with endogenous argininosuccinate lyase activity in the lenses of vertebrates. Biochem Int. 1991 Nov;25(4):705–713. [PubMed] [Google Scholar]
  8. Chiou S. H., Lo C. H., Chang C. Y., Itoh T., Kaji H., Samejima T. Ostrich crystallins. Structural characterization of delta-crystallin with enzymic activity. Biochem J. 1991 Jan 15;273(Pt 2):295–300. doi: 10.1042/bj2730295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark A. C., Sinclair J. F., Baldwin T. O. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J Biol Chem. 1993 May 25;268(15):10773–10779. [PubMed] [Google Scholar]
  10. Garrard L. J., Bui Q. T., Nygaard R., Raushel F. M. Acid-base catalysis in the argininosuccinate lyase reaction. J Biol Chem. 1985 May 10;260(9):5548–5553. [PubMed] [Google Scholar]
  11. Gloss L. M., Matthews C. R. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor. Biochemistry. 1997 May 13;36(19):5612–5623. doi: 10.1021/bi970056e. [DOI] [PubMed] [Google Scholar]
  12. Graham C., Hodin J., Wistow G. A retinaldehyde dehydrogenase as a structural protein in a mammalian eye lens. Gene recruitment of eta-crystallin. J Biol Chem. 1996 Jun 28;271(26):15623–15628. doi: 10.1074/jbc.271.26.15623. [DOI] [PubMed] [Google Scholar]
  13. Greene R. F., Jr, Pace C. N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem. 1974 Sep 10;249(17):5388–5393. [PubMed] [Google Scholar]
  14. Grimsley J. K., Scholtz J. M., Pace C. N., Wild J. R. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry. 1997 Nov 25;36(47):14366–14374. doi: 10.1021/bi971596e. [DOI] [PubMed] [Google Scholar]
  15. Lee H. J., Chiou S. H., Chang G. G. Biochemical characterization and kinetic analysis of duck delta-crystallin with endogenous argininosuccinate lyase activity. Biochem J. 1992 Apr 15;283(Pt 2):597–603. doi: 10.1042/bj2830597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee H. J., Chiou S. H., Chang G. G. Inactivation of the endogenous argininosuccinate lyase activity of duck delta-crystallin by modification of an essential histidine residue with diethyl pyrocarbonate. Biochem J. 1993 Jul 15;293(Pt 2):537–544. doi: 10.1042/bj2930537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li X., Wistow G. J., Piatigorsky J. Linkage and expression of the argininosuccinate lyase/delta-crystallin genes of the duck: insertion of a CR1 element in the intergenic spacer. Biochim Biophys Acta. 1995 Mar 14;1261(1):25–34. doi: 10.1016/0167-4781(94)00211-k. [DOI] [PubMed] [Google Scholar]
  18. Lin C. W., Chiou S. H. Sequence analysis of pigeon delta-crystallin gene and its deduced primary structure. Comparison of avian delta-crystallins with and without endogenous argininosuccinate lyase activity. FEBS Lett. 1992 Oct 26;311(3):276–280. doi: 10.1016/0014-5793(92)81119-7. [DOI] [PubMed] [Google Scholar]
  19. Miller S., Lesk A. M., Janin J., Chothia C. The accessible surface area and stability of oligomeric proteins. 1987 Aug 27-Sep 2Nature. 328(6133):834–836. doi: 10.1038/328834a0. [DOI] [PubMed] [Google Scholar]
  20. Mori M., Matsubasa T., Amaya Y., Takiguchi M. Molecular evolution from argininosuccinate lyase to delta-crystallin. Prog Clin Biol Res. 1990;344:683–699. [PubMed] [Google Scholar]
  21. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nickerson J. M., Wawrousek E. F., Hawkins J. W., Wakil A. S., Wistow G. J., Thomas G., Norman B. L., Piatigorsky J. The complete sequence of the chicken delta 1 crystallin gene and its 5' flanking region. J Biol Chem. 1985 Aug 5;260(16):9100–9105. [PubMed] [Google Scholar]
  24. Oliveira A. C., Gaspar L. P., Da Poian A. T., Silva J. L. Arc repressor will not denature under pressure in the absence of water. J Mol Biol. 1994 Jul 15;240(3):184–187. doi: 10.1006/jmbi.1994.1433. [DOI] [PubMed] [Google Scholar]
  25. Patejunas G., Barbosa P., Lacombe M., O'Brien W. E. Exploring the role of histidines in the catalytic activity of duck delta-crystallins using site-directed mutagenesis. Exp Eye Res. 1995 Aug;61(2):151–154. doi: 10.1016/s0014-4835(05)80034-x. [DOI] [PubMed] [Google Scholar]
  26. Piatigorsky J., Horwitz J. Characterization and enzyme activity of argininosuccinate lyase/delta-crystallin of the embryonic duck lens. Biochim Biophys Acta. 1996 Jul 18;1295(2):158–164. doi: 10.1016/0167-4838(96)00030-1. [DOI] [PubMed] [Google Scholar]
  27. Piatigorsky J., Horwitz J., Simpson R. T. Partial dissociation and renaturation of embryonic chick delta-crystallin. Characterization by ultracentrifugation and circular dichroism. Biochim Biophys Acta. 1977 Feb 22;490(2):279–289. doi: 10.1016/0005-2795(77)90003-4. [DOI] [PubMed] [Google Scholar]
  28. Piatigorsky J. Lens crystallins. Innovation associated with changes in gene regulation. J Biol Chem. 1992 Mar 5;267(7):4277–4280. [PubMed] [Google Scholar]
  29. Piatigorsky J., O'Brien W. E., Norman B. L., Kalumuck K., Wistow G. J., Borras T., Nickerson J. M., Wawrousek E. F. Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A. 1988 May;85(10):3479–3483. doi: 10.1073/pnas.85.10.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Royer C. A. Improvements in the numerical analysis of thermodynamic data from biomolecular complexes. Anal Biochem. 1993 Apr;210(1):91–97. doi: 10.1006/abio.1993.1155. [DOI] [PubMed] [Google Scholar]
  31. Saribaş A. S., Schindler J. F., Viola R. E. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase. J Biol Chem. 1994 Mar 4;269(9):6313–6319. [PubMed] [Google Scholar]
  32. Shi W., Dunbar J., Jayasekera M. M., Viola R. E., Farber G. K. The structure of L-aspartate ammonia-lyase from Escherichia coli. Biochemistry. 1997 Jul 29;36(30):9136–9144. doi: 10.1021/bi9704515. [DOI] [PubMed] [Google Scholar]
  33. Simpson A., Bateman O., Driessen H., Lindley P., Moss D., Mylvaganam S., Narebor E., Slingsby C. The structure of avian eye lens delta-crystallin reveals a new fold for a superfamily of oligomeric enzymes. Nat Struct Biol. 1994 Oct;1(10):724–734. doi: 10.1038/nsb1094-724. [DOI] [PubMed] [Google Scholar]
  34. Simpson A., Moss D., Slingsby C. The avian eye lens protein delta-crystallin shows a novel packing arrangement of tetramers in a supramolecular helix. Structure. 1995 Apr 15;3(4):403–412. doi: 10.1016/s0969-2126(01)00171-x. [DOI] [PubMed] [Google Scholar]
  35. Stone R. L., Zalkin H., Dixon J. E. Expression, purification, and kinetic characterization of recombinant human adenylosuccinate lyase. J Biol Chem. 1993 Sep 15;268(26):19710–19716. [PubMed] [Google Scholar]
  36. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  37. Turner M. A., Simpson A., McInnes R. R., Howell P. L. Human argininosuccinate lyase: a structural basis for intragenic complementation. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9063–9068. doi: 10.1073/pnas.94.17.9063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Voorter C. E., Salemink I., De Jong W. W. delta-Crystallin is more thermostable than mammalian argininosuccinate lyase. Exp Eye Res. 1993 Jun;56(6):733–735. doi: 10.1006/exer.1993.1091. [DOI] [PubMed] [Google Scholar]
  39. Wawrousek E. F., Nickerson J. M., Piatigorsky J. Two delta-crystallin polypeptides are derived from a cloned delta 1-crystallin cDNA. FEBS Lett. 1986 Sep 15;205(2):235–240. doi: 10.1016/0014-5793(86)80904-8. [DOI] [PubMed] [Google Scholar]
  40. Weaver T. M., Levitt D. G., Donnelly M. I., Stevens P. P., Banaszak L. J. The multisubunit active site of fumarase C from Escherichia coli. Nat Struct Biol. 1995 Aug;2(8):654–662. doi: 10.1038/nsb0895-654. [DOI] [PubMed] [Google Scholar]
  41. Weaver T., Banaszak L. Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli. Biochemistry. 1996 Nov 5;35(44):13955–13965. doi: 10.1021/bi9614702. [DOI] [PubMed] [Google Scholar]
  42. Williams S. E., Woolridge E. M., Ransom S. C., Landro J. A., Babbitt P. C., Kozarich J. W. 3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. Biochemistry. 1992 Oct 13;31(40):9768–9776. doi: 10.1021/bi00155a033. [DOI] [PubMed] [Google Scholar]
  43. Wistow G. J., Mulders J. W., de Jong W. W. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature. 1987 Apr 9;326(6113):622–624. doi: 10.1038/326622a0. [DOI] [PubMed] [Google Scholar]
  44. Wistow G. J., Piatigorsky J. Gene conversion and splice-site slippage in the argininosuccinate lyases/delta-crystallins of the duck lens: members of an enzyme superfamily. Gene. 1990 Dec 15;96(2):263–270. doi: 10.1016/0378-1119(90)90262-p. [DOI] [PubMed] [Google Scholar]
  45. Wistow G., Anderson A., Piatigorsky J. Evidence for neutral and selective processes in the recruitment of enzyme-crystallins in avian lenses. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6277–6280. doi: 10.1073/pnas.87.16.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wistow G. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci. 1993 Aug;18(8):301–306. doi: 10.1016/0968-0004(93)90041-k. [DOI] [PubMed] [Google Scholar]
  47. Wistow G., Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science. 1987 Jun 19;236(4808):1554–1556. doi: 10.1126/science.3589669. [DOI] [PubMed] [Google Scholar]
  48. Woods S. A., Miles J. S., Roberts R. E., Guest J. R. Structural and functional relationships between fumarase and aspartase. Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12. Biochem J. 1986 Jul 15;237(2):547–557. doi: 10.1042/bj2370547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Woods S. A., Schwartzbach S. D., Guest J. R. Two biochemically distinct classes of fumarase in Escherichia coli. Biochim Biophys Acta. 1988 Apr 28;954(1):14–26. doi: 10.1016/0167-4838(88)90050-7. [DOI] [PubMed] [Google Scholar]
  50. Yeh L. S., Elzanowski A., Hunt L. T., Barker W. C. Homology of delta crystallin and argininosuccinate lyase. Comp Biochem Physiol B. 1988;89(2):433–437. doi: 10.1016/0305-0491(88)90247-7. [DOI] [PubMed] [Google Scholar]
  51. Zhuang P., Eisenstein E., Howell E. E. Equilibrium folding studies of tetrameric R67 dihydrofolate reductase. Biochemistry. 1994 Apr 12;33(14):4237–4244. doi: 10.1021/bi00180a018. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES