Abstract
We describe an extensive test of Geocore, an ab initio peptide folding algorithm. We studied 18 short molecules for which there are structures in the Protein Data Bank; chains are up to 31 monomers long. Except for the very shortest peptides, an extremely simple energy function is sufficient to discriminate the true native state from more than 10(8) lowest energy conformations that are searched explicitly for each peptide. A high incidence of native-like structures is found within the best few hundred conformations generated by Geocore for each amino acid sequence. Predictions improve when the number of discrete phi/psi choices is increased.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boczko E. M., Brooks C. L., 3rd First-principles calculation of the folding free energy of a three-helix bundle protein. Science. 1995 Jul 21;269(5222):393–396. doi: 10.1126/science.7618103. [DOI] [PubMed] [Google Scholar]
- Covell D. G. Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins. 1992 Nov;14(3):409–420. doi: 10.1002/prot.340140310. [DOI] [PubMed] [Google Scholar]
- Covell D. G. Lattice model simulations of polypeptide chain folding. J Mol Biol. 1994 Jan 21;235(3):1032–1043. doi: 10.1006/jmbi.1994.1055. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Additivity principles in biochemistry. J Biol Chem. 1997 Jan 10;272(2):701–704. doi: 10.1074/jbc.272.2.701. [DOI] [PubMed] [Google Scholar]
- Hinds D. A., Levitt M. Exploring conformational space with a simple lattice model for protein structure. J Mol Biol. 1994 Nov 4;243(4):668–682. doi: 10.1016/0022-2836(94)90040-x. [DOI] [PubMed] [Google Scholar]
- Karplus P. A. Experimentally observed conformation-dependent geometry and hidden strain in proteins. Protein Sci. 1996 Jul;5(7):1406–1420. doi: 10.1002/pro.5560050719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
- Kuntz I. D., Crippen G. M., Kollman P. A., Kimelman D. Calculation of protein tertiary structure. J Mol Biol. 1976 Oct 5;106(4):983–994. doi: 10.1016/0022-2836(76)90347-8. [DOI] [PubMed] [Google Scholar]
- Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
- Maiorov V. N., Crippen G. M. Contact potential that recognizes the correct folding of globular proteins. J Mol Biol. 1992 Oct 5;227(3):876–888. doi: 10.1016/0022-2836(92)90228-c. [DOI] [PubMed] [Google Scholar]
- Monge A., Friesner R. A., Honig B. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5027–5029. doi: 10.1073/pnas.91.11.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sippl M. J., Hendlich M., Lackner P. Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: development of strategies and construction of models for myoglobin, lysozyme, and thymosin beta 4. Protein Sci. 1992 May;1(5):625–640. doi: 10.1002/pro.5560010509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skolnick J., Kolinski A. Simulations of the folding of a globular protein. Science. 1990 Nov 23;250(4984):1121–1125. doi: 10.1126/science.250.4984.1121. [DOI] [PubMed] [Google Scholar]
- Srinivasan R., Rose G. D. LINUS: a hierarchic procedure to predict the fold of a protein. Proteins. 1995 Jun;22(2):81–99. doi: 10.1002/prot.340220202. [DOI] [PubMed] [Google Scholar]
- Vajda S., Jafri M. S., Sezerman O. U., DeLisi C. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization. Biopolymers. 1993 Jan;33(1):173–192. doi: 10.1002/bip.360330117. [DOI] [PubMed] [Google Scholar]
- Wallqvist A., Ullner M. A simplified amino acid potential for use in structure predictions of proteins. Proteins. 1994 Mar;18(3):267–280. doi: 10.1002/prot.340180308. [DOI] [PubMed] [Google Scholar]
- Wilson C., Doniach S. A computer model to dynamically simulate protein folding: studies with crambin. Proteins. 1989;6(2):193–209. doi: 10.1002/prot.340060208. [DOI] [PubMed] [Google Scholar]
- Yue K., Dill K. A. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 1996 Feb;5(2):254–261. doi: 10.1002/pro.5560050209. [DOI] [PMC free article] [PubMed] [Google Scholar]