Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 May;8(5):1064–1074. doi: 10.1110/ps.8.5.1064

The calorimetric criterion for a two-state process revisited.

Y Zhou 1, C K Hall 1, M Karplus 1
PMCID: PMC2144339  PMID: 10338017

Abstract

The "calorimetric criterion" is one of the important experimental approaches for determining whether protein folding is an "all-or-none" two-state transition (i.e., whether intermediates are present at equilibrium). The calorimetric criterion states that the equivalence of the "measured" calorimetric enthalpy change and the effective two-state van't Hoff enthalpy change demonstrates that there is a two-state transition. This paper addresses the essential question of whether the calorimetric criterion is a necessary and sufficient condition for a two-state process and shows that it is necessary but not sufficient by means of specific examples. Analysis of simple models indicates that the heat capacity curve, regardless of whether it originates from a two-state process or not, can always be decomposed in such a way that the calorimetric criterion is satisfied. Exact results for a three-state model and a homopolymer tetramer demonstrate that the deviation from the calorimetric criterion is not simply related to the population of intermediate states. Analysis of a three-helix bundle protein model, which has a two-state folding from a random coil to ordered (molten) globule, shows that the calorimetric criterion may not be satisfied if the standard linear interpolation of baselines (weighted or unweighted) is employed. A specific example also suggests that the more recently introduced deconvolution method is not necessarily better than the simple calorimetric criterion for distinguishing a two-state transition from a three-state transition. Although the calorimetric criterion is not a sufficient condition for a two-state process, it is likely to continue to be of practical utility, particularly when its results are shown to be consistent with those from other experimental methods.

Full Text

The Full Text of this article is available as a PDF (285.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  2. BECK K., GILL S. J., DOWNING M. HEAT OF TRANSITION OF RIBONUCLEASE A. J Am Chem Soc. 1965 Feb 20;87:901–904. doi: 10.1021/ja01082a036. [DOI] [PubMed] [Google Scholar]
  3. Chan H. S., Bromberg S., Dill K. A. Models of cooperativity in protein folding. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):61–70. doi: 10.1098/rstb.1995.0046. [DOI] [PubMed] [Google Scholar]
  4. Chen B. L., Schellman J. A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry. 1989 Jan 24;28(2):685–691. doi: 10.1021/bi00428a041. [DOI] [PubMed] [Google Scholar]
  5. Chen X., Matthews C. R. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the alpha subunit of tryptophan synthase. Biochemistry. 1994 May 24;33(20):6356–6362. doi: 10.1021/bi00186a040. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E. Detection of folding intermediates using urea-gradient electrophoresis. Methods Enzymol. 1986;131:156–172. doi: 10.1016/0076-6879(86)31040-1. [DOI] [PubMed] [Google Scholar]
  7. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrenberg AM, Swendsen RH. Optimized Monte Carlo data analysis. Phys Rev Lett. 1989 Sep 18;63(12):1195–1198. doi: 10.1103/PhysRevLett.63.1195. [DOI] [PubMed] [Google Scholar]
  9. Gesierich U., Pfeil W. The conformational stability of alpha-crystallin is rather low: calorimetric results. FEBS Lett. 1996 Sep 16;393(2-3):151–154. doi: 10.1016/0014-5793(96)00867-8. [DOI] [PubMed] [Google Scholar]
  10. Haynie D. T., Freire E. Estimation of the folding/unfolding energetics of marginally stable proteins using differential scanning calorimetry. Anal Biochem. 1994 Jan;216(1):33–41. doi: 10.1006/abio.1994.1004. [DOI] [PubMed] [Google Scholar]
  11. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
  12. Jackson W. M., Brandts J. F. Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. Biochemistry. 1970 May 26;9(11):2294–2301. doi: 10.1021/bi00813a011. [DOI] [PubMed] [Google Scholar]
  13. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  14. Karplus M., Sali A. Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol. 1995 Feb;5(1):58–73. doi: 10.1016/0959-440x(95)80010-x. [DOI] [PubMed] [Google Scholar]
  15. Liu Y., Sturtevant J. M. Significant discrepancies between van't Hoff and calorimetric enthalpies. II. Protein Sci. 1995 Dec;4(12):2559–2561. doi: 10.1002/pro.5560041212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu Y., Sturtevant J. M. Significant discrepancies between van't Hoff and calorimetric enthalpies. III. Biophys Chem. 1997 Feb 28;64(1-3):121–126. doi: 10.1016/s0301-4622(96)02229-6. [DOI] [PubMed] [Google Scholar]
  17. Lumry R., Biltonen R. Validity of the "two-state" hypothesis for conformational transitions of proteins. Biopolymers. 1966 Sep;4(8):917–944. doi: 10.1002/bip.1966.360040808. [DOI] [PubMed] [Google Scholar]
  18. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  19. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  20. Naghibi H., Tamura A., Sturtevant J. M. Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5597–5599. doi: 10.1073/pnas.92.12.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Privalov G., Kavina V., Freire E., Privalov P. L. Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal Biochem. 1995 Nov 20;232(1):79–85. doi: 10.1006/abio.1995.9957. [DOI] [PubMed] [Google Scholar]
  22. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  23. Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
  24. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  25. Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
  26. Shakhnovich E. I. Modeling protein folding: the beauty and power of simplicity. Fold Des. 1996;1(3):R50–R54. doi: 10.1016/s1359-0278(96)00027-2. [DOI] [PubMed] [Google Scholar]
  27. Shrake A., Ross P. D. Ligand-induced biphasic protein denaturation. J Biol Chem. 1990 Mar 25;265(9):5055–5059. [PubMed] [Google Scholar]
  28. Straume M., Freire E. Two-dimensional differential scanning calorimetry: simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis. Anal Biochem. 1992 Jun;203(2):259–268. doi: 10.1016/0003-2697(92)90311-t. [DOI] [PubMed] [Google Scholar]
  29. Takahashi K., Sturtevant J. M. Thermal denaturation of streptomyces subtilisin inhibitor, subtilisin BPN', and the inhibitor-subtilisin complex. Biochemistry. 1981 Oct 13;20(21):6185–6190. doi: 10.1021/bi00524a042. [DOI] [PubMed] [Google Scholar]
  30. Taketomi H., Ueda Y., Gō N. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int J Pept Protein Res. 1975;7(6):445–459. [PubMed] [Google Scholar]
  31. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  32. Tsong T. Y., Baldwin R. L. A sequential model of nucleation-dependent protein folding: kinetic studies of ribonuclease A. J Mol Biol. 1972 Feb 14;63(3):453–469. doi: 10.1016/0022-2836(72)90440-8. [DOI] [PubMed] [Google Scholar]
  33. Uversky V. N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry. 1993 Dec 7;32(48):13288–13298. doi: 10.1021/bi00211a042. [DOI] [PubMed] [Google Scholar]
  34. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhou Y., Karplus M. Folding thermodynamics of a model three-helix-bundle protein. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14429–14432. doi: 10.1073/pnas.94.26.14429. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES