Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):186–193. doi: 10.1110/ps.9.1.186

Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra.

S Cavagnero 1, Y Thériault 1, S S Narula 1, H J Dyson 1, P E Wright 1
PMCID: PMC2144433  PMID: 10739261

Abstract

The hydrogen exchange behavior of exchangeable protons in proteins can provide important information for understanding the principles of protein structure and function. The positions and exchange rates of the slowly-exchanging amide protons in sperm whale myoglobin have been mapped using 15N-1H NMR spectroscopy. The slowest-exchanging amide protons are those that are hydrogen bonded in the longest helices, including members of the B, E, and H helices. Significant protection factors were observed also in the A, C, and G helices, and for a few residues in the D and F helices. Knowledge of the identity of slowly-exchanging amide protons forms the basis for the extensive quench-flow kinetic folding experiments that have been performed for myoglobin, and gives insights into the tertiary interactions and dynamics in the protein.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Dames S. A., Wiltscheck R. A fragment of staphylococcal nuclease with an OB-fold structure shows hydrogen-exchange protection factors in the range reported for "molten globules". Protein Sci. 1996 Sep;5(9):1942–1946. doi: 10.1002/pro.5560050924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buck M., Radford S. E., Dobson C. M. Amide hydrogen exchange in a highly denatured state. Hen egg-white lysozyme in urea. J Mol Biol. 1994 Apr 1;237(3):247–254. doi: 10.1006/jmbi.1994.1228. [DOI] [PubMed] [Google Scholar]
  5. Chamberlain A. K., Marqusee S. Touring the landscapes: partially folded proteins examined by hydrogen exchange. Structure. 1997 Jul 15;5(7):859–863. doi: 10.1016/s0969-2126(97)00240-2. [DOI] [PubMed] [Google Scholar]
  6. Chyan C. L., Wormald C., Dobson C. M., Evans P. A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry. 1993 Jun 1;32(21):5681–5691. doi: 10.1021/bi00072a025. [DOI] [PubMed] [Google Scholar]
  7. Clarke J., Hounslow A. M., Bycroft M., Fersht A. R. Local breathing and global unfolding in hydrogen exchange of barnase and its relationship to protein folding pathways. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9837–9841. doi: 10.1073/pnas.90.21.9837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Connelly G. P., Bai Y., Jeng M. F., Englander S. W. Isotope effects in peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):87–92. doi: 10.1002/prot.340170111. [DOI] [PubMed] [Google Scholar]
  9. Dalvit C., Wright P. E. Assignment of resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of sperm whale myoglobin by phase-sensitive two-dimensional techniques. J Mol Biol. 1987 Mar 20;194(2):313–327. doi: 10.1016/0022-2836(87)90378-0. [DOI] [PubMed] [Google Scholar]
  10. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  11. Delepierre M., Dobson C. M., Karplus M., Poulsen F. M., States D. J., Wedin R. E. Electrostatic effects and hydrogen exchange behaviour in proteins. The pH dependence of exchange rates in lysozyme. J Mol Biol. 1987 Sep 5;197(1):111–130. doi: 10.1016/0022-2836(87)90613-9. [DOI] [PubMed] [Google Scholar]
  12. Eliezer D., Jennings P. A., Dyson H. J., Wright P. E. Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR. FEBS Lett. 1997 Nov 3;417(1):92–96. doi: 10.1016/s0014-5793(97)01256-8. [DOI] [PubMed] [Google Scholar]
  13. Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
  14. Eliezer D., Yao J., Dyson H. J., Wright P. E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol. 1998 Feb;5(2):148–155. doi: 10.1038/nsb0298-148. [DOI] [PubMed] [Google Scholar]
  15. Englander J. J., Calhoun D. B., Englander S. W. Measurement and calibration of peptide group hydrogen-deuterium exchange by ultraviolet spectrophotometry. Anal Biochem. 1979 Jan 15;92(2):517–524. doi: 10.1016/0003-2697(79)90693-6. [DOI] [PubMed] [Google Scholar]
  16. Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
  17. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  18. Finucane M. D., Jardetzky O. Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. J Mol Biol. 1995 Nov 3;253(4):576–589. doi: 10.1006/jmbi.1995.0574. [DOI] [PubMed] [Google Scholar]
  19. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  20. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  21. Jeng M. F., Dyson H. J. Comparison of the hydrogen-exchange behavior of reduced and oxidized Escherichia coli thioredoxin. Biochemistry. 1995 Jan 17;34(2):611–619. doi: 10.1021/bi00002a028. [DOI] [PubMed] [Google Scholar]
  22. Jennings P. A., Stone M. J., Wright P. E. Overexpression of myoglobin and assignment of its amide, C alpha and C beta resonances. J Biomol NMR. 1995 Nov;6(3):271–276. doi: 10.1007/BF00197808. [DOI] [PubMed] [Google Scholar]
  23. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  24. Jones D. N., Bycroft M., Lubienski M. J., Fersht A. R. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Lett. 1993 Sep 27;331(1-2):165–172. doi: 10.1016/0014-5793(93)80319-p. [DOI] [PubMed] [Google Scholar]
  25. Kumar N. V., Kallenbach N. R. Hydrogen exchange of individual amide protons in the F helix of cyanometmyoglobin. Biochemistry. 1985 Dec 17;24(26):7658–7662. doi: 10.1021/bi00347a024. [DOI] [PubMed] [Google Scholar]
  26. Kuriyan J., Wilz S., Karplus M., Petsko G. A. X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution. J Mol Biol. 1986 Nov 5;192(1):133–154. doi: 10.1016/0022-2836(86)90470-5. [DOI] [PubMed] [Google Scholar]
  27. Kuwajima K., Baldwin R. L. Nature and locations of the most slowly exchanging peptide NH protons in residues 1 to 19 of ribonuclease S. J Mol Biol. 1983 Sep 5;169(1):281–297. doi: 10.1016/s0022-2836(83)80184-3. [DOI] [PubMed] [Google Scholar]
  28. Loh S. N., Prehoda K. E., Wang J., Markley J. L. Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry. 1993 Oct 19;32(41):11022–11028. doi: 10.1021/bi00092a011. [DOI] [PubMed] [Google Scholar]
  29. Louie G., Englander J. J., Englander S. W. Salt, phosphate and the Bohr effect at the hemoglobin beta chain C terminus studied by hydrogen exchange. J Mol Biol. 1988 Jun 20;201(4):765–772. doi: 10.1016/0022-2836(88)90473-1. [DOI] [PubMed] [Google Scholar]
  30. Milne J. S., Mayne L., Roder H., Wand A. J., Englander S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 1998 Mar;7(3):739–745. doi: 10.1002/pro.5560070323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
  32. Morikis D., Wright P. E. Hydrogen exchange in the carbon monoxide complex of soybean leghemoglobin. Eur J Biochem. 1996 Apr 1;237(1):212–220. doi: 10.1111/j.1432-1033.1996.0212n.x. [DOI] [PubMed] [Google Scholar]
  33. Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
  34. Rashin A. A. Correlation between calculated local stability and hydrogen exchange rates in proteins. J Mol Biol. 1987 Nov 20;198(2):339–349. doi: 10.1016/0022-2836(87)90317-2. [DOI] [PubMed] [Google Scholar]
  35. Richarz R., Sehr P., Wagner G., Wüthrich K. Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):19–30. doi: 10.1016/0022-2836(79)90549-7. [DOI] [PubMed] [Google Scholar]
  36. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  38. Thériault Y., Pochapsky T. C., Dalvit C., Chiu M. L., Sligar S. G., Wright P. E. 1H and 15N resonance assignments and secondary structure of the carbon monoxide complex of sperm whale myoglobin. J Biomol NMR. 1994 Jul;4(4):491–504. doi: 10.1007/BF00156616. [DOI] [PubMed] [Google Scholar]
  39. Tsui V., Garcia C., Cavagnero S., Siuzdak G., Dyson H. J., Wright P. E. Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through and obligatory intermediate. Protein Sci. 1999 Jan;8(1):45–49. doi: 10.1110/ps.8.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]
  41. Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
  42. Wagner G., Wüthrich K. Structural interpretation of the amide proton exchange in the basic pancreatic trypsin inhibitor and related proteins. J Mol Biol. 1979 Oct 15;134(1):75–94. doi: 10.1016/0022-2836(79)90414-5. [DOI] [PubMed] [Google Scholar]
  43. Wand A. J., Roder H., Englander S. W. Two-dimensional 1H NMR studies of cytochrome c: hydrogen exchange in the N-terminal helix. Biochemistry. 1986 Mar 11;25(5):1107–1114. doi: 10.1021/bi00353a025. [DOI] [PubMed] [Google Scholar]
  44. Wang Q. W., Kline A. D., Wüthrich K. Amide proton exchange in the alpha-amylase polypeptide inhibitor Tendamistat studied by two-dimensional 1H nuclear magnetic resonance. Biochemistry. 1987 Oct 6;26(20):6488–6493. doi: 10.1021/bi00394a030. [DOI] [PubMed] [Google Scholar]
  45. Williams D. C., Jr, Rule G. S., Poljak R. J., Benjamin D. C. Reduction in the amide hydrogen exchange rates of an anti-lysozyme Fv fragment due to formation of the Fv-lysozyme complex. J Mol Biol. 1997 Aug 1;270(5):751–762. doi: 10.1006/jmbi.1997.1122. [DOI] [PubMed] [Google Scholar]
  46. Woodward C. Is the slow exchange core the protein folding core? Trends Biochem Sci. 1993 Oct;18(10):359–360. doi: 10.1016/0968-0004(93)90086-3. [DOI] [PubMed] [Google Scholar]
  47. Yao J., Dyson H. J., Wright P. E. Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett. 1997 Dec 15;419(2-3):285–289. doi: 10.1016/s0014-5793(97)01474-9. [DOI] [PubMed] [Google Scholar]
  48. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES