Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):1–9. doi: 10.1110/ps.9.1.1

Substrate-assisted catalysis: molecular basis and biological significance.

W Dall'Acqua 1, P Carter 1
PMCID: PMC2144443  PMID: 10739241

Abstract

Substrate-assisted catalysis (SAC) is the process by which a functional group in a substrate contributes to catalysis by an enzyme. SAC has been demonstrated for representatives of three major enzyme classes: serine proteases, GTPases, and type II restriction endonucleases, as well as lysozyme and hexose-1-phosphate uridylyltransferase. Moreover, structure-based predictions of SAC have been made for many additional enzymes. Examples of SAC include both naturally occurring enzymes such as type II restriction endonucleases as well as engineered enzymes including serine proteases. In the latter case, a functional group from a substrate can substitute for a catalytic residue replaced by site-directed mutagenesis. From a protein engineering perspective, SAC provides a strategy for drastically changing enzyme substrate specificity or even the reaction catalyzed. From a biological viewpoint, SAC contributes significantly to the activity of some enzymes and may represent a functional intermediate in the evolution of catalysis. This review focuses on advances in engineering enzyme specificity and activity by SAC, together with the biological significance of this phenomenon.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnheim N., Inouye M., Law L., Laudin A. Chemical studies on the enzymatic specificity of goose egg white lysozyme. J Biol Chem. 1973 Jan 10;248(1):233–236. [PubMed] [Google Scholar]
  2. Beck J. T., Marsters S. A., Harris R. J., Carter P., Ashkenazi A., Chamow S. M. Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage. Mol Immunol. 1994 Dec;31(17):1335–1344. doi: 10.1016/0161-5890(94)90052-3. [DOI] [PubMed] [Google Scholar]
  3. Bos J. L. Ras-like GTPases. Biochim Biophys Acta. 1997 Oct 24;1333(2):M19–M31. doi: 10.1016/s0304-419x(97)00015-2. [DOI] [PubMed] [Google Scholar]
  4. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  5. Bryan P., Pantoliano M. W., Quill S. G., Hsiao H. Y., Poulos T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3743–3745. doi: 10.1073/pnas.83.11.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter P., Abrahmsén L., Wells J. A. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Biochemistry. 1991 Jun 25;30(25):6142–6148. doi: 10.1021/bi00239a009. [DOI] [PubMed] [Google Scholar]
  7. Carter P., Nilsson B., Burnier J. P., Burdick D., Wells J. A. Engineering subtilisin BPN' for site-specific proteolysis. Proteins. 1989;6(3):240–248. doi: 10.1002/prot.340060306. [DOI] [PubMed] [Google Scholar]
  8. Carter P., Wells J. A. Dissecting the catalytic triad of a serine protease. Nature. 1988 Apr 7;332(6164):564–568. doi: 10.1038/332564a0. [DOI] [PubMed] [Google Scholar]
  9. Carter P., Wells J. A. Engineering enzyme specificity by "substrate-assisted catalysis". Science. 1987 Jul 24;237(4813):394–399. doi: 10.1126/science.3299704. [DOI] [PubMed] [Google Scholar]
  10. Cavarelli J., Eriani G., Rees B., Ruff M., Boeglin M., Mitschler A., Martin F., Gangloff J., Thierry J. C., Moras D. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 1994 Jan 15;13(2):327–337. doi: 10.1002/j.1460-2075.1994.tb06265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chakravarty P. K., Carl P. L., Weber M. J., Katzenellenbogen J. A. Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin. J Med Chem. 1983 May;26(5):638–644. doi: 10.1021/jm00359a004. [DOI] [PubMed] [Google Scholar]
  12. Chung H. H., Benson D. R., Schultz P. G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science. 1993 Feb 5;259(5096):806–809. doi: 10.1126/science.8430333. [DOI] [PubMed] [Google Scholar]
  13. Coleman D. E., Berghuis A. M., Lee E., Linder M. E., Gilman A. G., Sprang S. R. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science. 1994 Sep 2;265(5177):1405–1412. doi: 10.1126/science.8073283. [DOI] [PubMed] [Google Scholar]
  14. Connolly B. A., Eckstein F., Pingoud A. The stereochemical course of the restriction endonuclease EcoRI-catalyzed reaction. J Biol Chem. 1984 Sep 10;259(17):10760–10763. [PubMed] [Google Scholar]
  15. Corey D. R., Willett W. S., Coombs G. S., Craik C. S. Trypsin specificity increased through substrate-assisted catalysis. Biochemistry. 1995 Sep 12;34(36):11521–11527. doi: 10.1021/bi00036a027. [DOI] [PubMed] [Google Scholar]
  16. Crane B. R., Arvai A. S., Gachhui R., Wu C., Ghosh D. K., Getzoff E. D., Stuehr D. J., Tainer J. A. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science. 1997 Oct 17;278(5337):425–431. doi: 10.1126/science.278.5337.425. [DOI] [PubMed] [Google Scholar]
  17. Cupp-Vickery J. R., Han O., Hutchinson C. R., Poulos T. L. Substrate-assisted catalysis in cytochrome P450eryF. Nat Struct Biol. 1996 Jul;3(7):632–637. doi: 10.1038/nsb0796-632. [DOI] [PubMed] [Google Scholar]
  18. Demartis S., Huber A., Viti F., Lozzi L., Giovannoni L., Neri P., Winter G., Neri D. A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J Mol Biol. 1999 Feb 19;286(2):617–633. doi: 10.1006/jmbi.1998.2476. [DOI] [PubMed] [Google Scholar]
  19. Der C. J., Finkel T., Cooper G. M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell. 1986 Jan 17;44(1):167–176. doi: 10.1016/0092-8674(86)90495-2. [DOI] [PubMed] [Google Scholar]
  20. Dohlman H. G., Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem. 1997 Feb 14;272(7):3871–3874. doi: 10.1074/jbc.272.7.3871. [DOI] [PubMed] [Google Scholar]
  21. Fastrez J., Fersht A. R. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry. 1973 May 22;12(11):2025–2034. doi: 10.1021/bi00735a001. [DOI] [PubMed] [Google Scholar]
  22. Forsberg G., Baastrup B., Rondahl H., Holmgren E., Pohl G., Hartmanis M., Lake M. An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des(1-3)insulin-like growth factor I. J Protein Chem. 1992 Apr;11(2):201–211. doi: 10.1007/BF01025226. [DOI] [PubMed] [Google Scholar]
  23. Forsberg G., Brobjer M., Holmgren E., Bergdahl K., Persson P., Gautvik K. M., Hartmanis M. Thrombin and H64A subtilisin cleavage of fusion proteins for preparation of human recombinant parathyroid hormone. J Protein Chem. 1991 Oct;10(5):517–526. doi: 10.1007/BF01025480. [DOI] [PubMed] [Google Scholar]
  24. Gibbs J. B., Schaber M. D., Allard W. J., Sigal I. S., Scolnick E. M. Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5026–5030. doi: 10.1073/pnas.85.14.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gideon P., John J., Frech M., Lautwein A., Clark R., Scheffler J. E., Wittinghofer A. Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol. 1992 May;12(5):2050–2056. doi: 10.1128/mcb.12.5.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  27. Gouaux J. E., Krause K. L., Lipscomb W. N. The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study. Biochem Biophys Res Commun. 1987 Feb 13;142(3):893–897. doi: 10.1016/0006-291x(87)91497-5. [DOI] [PubMed] [Google Scholar]
  28. Gouaux J. E., Lipscomb W. N. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4205–4208. doi: 10.1073/pnas.85.12.4205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grasby J. A., Connolly B. A. Stereochemical outcome of the hydrolysis reaction catalyzed by the EcoRV restriction endonuclease. Biochemistry. 1992 Sep 1;31(34):7855–7861. doi: 10.1021/bi00149a016. [DOI] [PubMed] [Google Scholar]
  30. Graziano M. P., Gilman A. G. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha. J Biol Chem. 1989 Sep 15;264(26):15475–15482. [PubMed] [Google Scholar]
  31. Groll D. H., Jeltsch A., Selent U., Pingoud A. Does the restriction endonuclease EcoRV employ a two-metal-Ion mechanism for DNA cleavage? Biochemistry. 1997 Sep 23;36(38):11389–11401. doi: 10.1021/bi9705826. [DOI] [PubMed] [Google Scholar]
  32. Horton N. C., Newberry K. J., Perona J. J. Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13489–13494. doi: 10.1073/pnas.95.23.13489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jeltsch A., Alves J., Maass G., Pingoud A. On the catalytic mechanism of EcoRI and EcoRV. A detailed proposal based on biochemical results, structural data and molecular modelling. FEBS Lett. 1992 Jun 8;304(1):4–8. doi: 10.1016/0014-5793(92)80576-3. [DOI] [PubMed] [Google Scholar]
  34. Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8499–8503. doi: 10.1073/pnas.90.18.8499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jeltsch A., Pleckaityte M., Selent U., Wolfes H., Siksnys V., Pingoud A. Evidence for substrate-assisted catalysis in the DNA cleavage of several restriction endonucleases. Gene. 1995 May 19;157(1-2):157–162. doi: 10.1016/0378-1119(94)00617-2. [DOI] [PubMed] [Google Scholar]
  36. Katayanagi K., Okumura M., Morikawa K. Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site. Proteins. 1993 Dec;17(4):337–346. doi: 10.1002/prot.340170402. [DOI] [PubMed] [Google Scholar]
  37. Kim J., Ruzicka F., Frey P. A. Remodeling hexose-1-phosphate uridylyltransferase: mechanism-inspired mutation into a new enzyme, UDP-hexose synthase. Biochemistry. 1990 Nov 27;29(47):10590–10593. doi: 10.1021/bi00499a003. [DOI] [PubMed] [Google Scholar]
  38. Kjeldgaard M., Nissen P., Thirup S., Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1993 Sep 15;1(1):35–50. doi: 10.1016/0969-2126(93)90007-4. [DOI] [PubMed] [Google Scholar]
  39. Koziolkiewicz M., Stec W. J. Application of phosphate-backbone-modified oligonucleotides in the studies on EcoRI endonuclease mechanism of action. Biochemistry. 1992 Oct 6;31(39):9460–9466. doi: 10.1021/bi00154a019. [DOI] [PubMed] [Google Scholar]
  40. Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
  41. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., Sigler P. B. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996 Jan 25;379(6563):311–319. doi: 10.1038/379311a0. [DOI] [PubMed] [Google Scholar]
  42. Landis C. A., Masters S. B., Spada A., Pace A. M., Bourne H. R., Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989 Aug 31;340(6236):692–696. doi: 10.1038/340692a0. [DOI] [PubMed] [Google Scholar]
  43. Langen R., Schweins T., Warshel A. On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins. Biochemistry. 1992 Sep 22;31(37):8691–8696. doi: 10.1021/bi00152a002. [DOI] [PubMed] [Google Scholar]
  44. Lowy D. R., Willumsen B. M. Function and regulation of ras. Annu Rev Biochem. 1993;62:851–891. doi: 10.1146/annurev.bi.62.070193.004223. [DOI] [PubMed] [Google Scholar]
  45. Malcolm B. A., Rosenberg S., Corey M. J., Allen J. S., de Baetselier A., Kirsch J. F. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci U S A. 1989 Jan;86(1):133–137. doi: 10.1073/pnas.86.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Masters S. B., Miller R. T., Chi M. H., Chang F. H., Beiderman B., Lopez N. G., Bourne H. R. Mutations in the GTP-binding site of GS alpha alter stimulation of adenylyl cyclase. J Biol Chem. 1989 Sep 15;264(26):15467–15474. [PubMed] [Google Scholar]
  47. Matsumura I., Kirsch J. F. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis. Biochemistry. 1996 Feb 13;35(6):1881–1889. doi: 10.1021/bi951671q. [DOI] [PubMed] [Google Scholar]
  48. Matthews D. J., Wells J. A. Substrate phage: selection of protease substrates by monovalent phage display. Science. 1993 May 21;260(5111):1113–1117. doi: 10.1126/science.8493554. [DOI] [PubMed] [Google Scholar]
  49. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  50. Ness J. E., Welch M., Giver L., Bueno M., Cherry J. R., Borchert T. V., Stemmer W. P., Minshull J. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol. 1999 Sep;17(9):893–896. doi: 10.1038/12884. [DOI] [PubMed] [Google Scholar]
  51. Noel J. P., Hamm H. E., Sigler P. B. The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature. 1993 Dec 16;366(6456):654–663. doi: 10.1038/366654a0. [DOI] [PubMed] [Google Scholar]
  52. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Patten P. A., Howard R. J., Stemmer W. P. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol. 1997 Dec;8(6):724–733. doi: 10.1016/s0958-1669(97)80127-9. [DOI] [PubMed] [Google Scholar]
  54. Pedersen H., Hölder S., Sutherlin D. P., Schwitter U., King D. S., Schultz P. G. A method for directed evolution and functional cloning of enzymes. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10523–10528. doi: 10.1073/pnas.95.18.10523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Perona J. J., Rould M. A., Steitz T. A. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry. 1993 Aug 31;32(34):8758–8771. doi: 10.1021/bi00085a006. [DOI] [PubMed] [Google Scholar]
  56. Pingoud A., Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem. 1997 May 15;246(1):1–22. doi: 10.1111/j.1432-1033.1997.t01-6-00001.x. [DOI] [PubMed] [Google Scholar]
  57. Privé G. G., Milburn M. V., Tong L., de Vos A. M., Yamaizumi Z., Nishimura S., Kim S. H. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3649–3653. doi: 10.1073/pnas.89.8.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Roberts R. J., Macelis D. REBASE-restriction enzymes and methylases. Nucleic Acids Res. 1999 Jan 1;27(1):312–313. doi: 10.1093/nar/27.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Rosenberg S., Kirsch J. F. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 2. Lysozyme and beta-glucosidase: acid and alkaline hydrolysis. Biochemistry. 1981 May 26;20(11):3196–3204. doi: 10.1021/bi00514a032. [DOI] [PubMed] [Google Scholar]
  60. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  61. Schweins T., Geyer M., Scheffzek K., Warshel A., Kalbitzer H. R., Wittinghofer A. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat Struct Biol. 1995 Jan;2(1):36–44. doi: 10.1038/nsb0195-36. [DOI] [PubMed] [Google Scholar]
  62. Schweins T., Langen R., Warshel A. Why have mutagenesis studies not located the general base in ras p21. Nat Struct Biol. 1994 Jul;1(7):476–484. doi: 10.1038/nsb0794-476. [DOI] [PubMed] [Google Scholar]
  63. Setlik R. F., Garduno-Juarez R., Manchester J. I., Shibata M., Ornstein R. L., Rein R. Modeling study on the cleavage step of the self-splicing reaction in group I introns. J Biomol Struct Dyn. 1993 Jun;10(6):945–972. doi: 10.1080/07391102.1993.10508689. [DOI] [PubMed] [Google Scholar]
  64. Shinde U., Inouye M. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. J Mol Biol. 1995 Mar 31;247(3):390–395. doi: 10.1006/jmbi.1994.0147. [DOI] [PubMed] [Google Scholar]
  65. Sondek J., Lambright D. G., Noel J. P., Hamm H. E., Sigler P. B. GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature. 1994 Nov 17;372(6503):276–279. doi: 10.1038/372276a0. [DOI] [PubMed] [Google Scholar]
  66. Stahl F., Wende W., Jeltsch A., Pingoud A. The mechanism of DNA cleavage by the type II restriction enzyme EcoRV: Asp36 is not directly involved in DNA cleavage but serves to couple indirect readout to catalysis. Biol Chem. 1998 Apr-May;379(4-5):467–473. doi: 10.1515/bchm.1998.379.4-5.467. [DOI] [PubMed] [Google Scholar]
  67. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  68. Strynadka N. C., James M. N. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J Mol Biol. 1991 Jul 20;220(2):401–424. doi: 10.1016/0022-2836(91)90021-w. [DOI] [PubMed] [Google Scholar]
  69. Temeles G. L., Gibbs J. B., D'Alonzo J. S., Sigal I. S., Scolnick E. M. Yeast and mammalian ras proteins have conserved biochemical properties. Nature. 1985 Feb 21;313(6004):700–703. doi: 10.1038/313700a0. [DOI] [PubMed] [Google Scholar]
  70. Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 1995 Dec 5;34(48):15619–15623. doi: 10.1021/bi00048a003. [DOI] [PubMed] [Google Scholar]
  71. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  72. Thorogood H., Grasby J. A., Connolly B. A. Influence of the phosphate backbone on the recognition and hydrolysis of DNA by the EcoRV restriction endonuclease. A study using oligodeoxynucleotide phosphorothioates. J Biol Chem. 1996 Apr 12;271(15):8855–8862. doi: 10.1074/jbc.271.15.8855. [DOI] [PubMed] [Google Scholar]
  73. Vernon C. A. The mechanisms of hydrolysis of glycosides and their revelance to enzyme-catalysed reactions. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):389–401. doi: 10.1098/rspb.1967.0036. [DOI] [PubMed] [Google Scholar]
  74. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]
  75. Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995 Dec 15;83(6):1047–1058. doi: 10.1016/0092-8674(95)90220-1. [DOI] [PubMed] [Google Scholar]
  76. Ward R. L., Clark M. A., Lees J., Hawkins N. J. Retrieval of human antibodies from phage-display libraries using enzymatic cleavage. J Immunol Methods. 1996 Jan 16;189(1):73–82. doi: 10.1016/0022-1759(95)00231-6. [DOI] [PubMed] [Google Scholar]
  77. Wilkie T. M., Yokoyama S. Evolution of the G protein alpha subunit multigene family. Soc Gen Physiol Ser. 1994;49:249–270. [PubMed] [Google Scholar]
  78. Zor T., Andorn R., Sofer I., Chorev M., Selinger Z. GTP analogue hydrolysis by the Gs protein: implication for the role of catalytic glutamine in the GTPase reaction. FEBS Lett. 1998 Aug 21;433(3):326–330. doi: 10.1016/s0014-5793(98)00930-2. [DOI] [PubMed] [Google Scholar]
  79. Zor T., Bar-Yaacov M., Elgavish S., Shaanan B., Selinger Z. Rescue of a mutant G-protein by substrate-assisted catalysis. Eur J Biochem. 1997 Oct 1;249(1):330–336. doi: 10.1111/j.1432-1033.1997.00330.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES