Abstract
Dimeric proteins can arise by the swapping of structural domains between monomers. The prevalence of this occurrence is unknown. Ribonuclease A (RNase A) is assumed to be a monomer near physiological conditions. Here, this hypothesis is tested and found to be imprecise. The two histidine residues (His12 and His119) in the active site of RNase A arise from two domains (S-peptide and S-protein) of the protein. The H12A and H119A variants have 10(5)-fold less ribonucleolytic activity than does the wild-type enzyme. Incubating a 1:1 mixture of the H12A and H119A variants at pH 6.5 and 65 degrees C results in a 10(3)-fold increase in ribonucleolytic activity. A large quantity of active dimer can be produced by lyophilizing a 1:1 mixture of the H12A and H119A variants from acetic acid. At pH 6.5 and 65 degrees C, the ribonucleolytic activity of this dimer converges to that of the dimer formed by simply incubating the monomers, as expected for a monomer-dimer equilibrium. The equilibrium dissociation constant for the dimer is near 2 mM at both 65 and 37 degrees C. This value of Kd is only 20-fold greater than the concentration of RNase A in the cow pancreas, suggesting that RNase A dimers exist in vivo. The intrinsic ability of RNase A to form dimers under physiological conditions is consistent with a detailed model for the evolution of homodimeric proteins. Dimers of "monomeric" proteins could be more prevalent than is usually appreciated.
Full Text
The Full Text of this article is available as a PDF (231.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adinolfi S., Piccoli R., Sica F., Mazzarella L. BS-RNase tetramers: an example of domain-swapped oligomers. FEBS Lett. 1996 Dec 2;398(2-3):326–332. doi: 10.1016/s0014-5793(96)01034-4. [DOI] [PubMed] [Google Scholar]
- Barnard E. A. Biological function of pancreatic ribonuclease. Nature. 1969 Jan 25;221(5178):340–344. doi: 10.1038/221340a0. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burbaum J. J., Raines R. T., Albery W. J., Knowles J. R. Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry. 1989 Nov 28;28(24):9293–9305. doi: 10.1021/bi00450a009. [DOI] [PubMed] [Google Scholar]
- CRESTFIELD A. M., STEIN W. H., MOORE S. On the aggregation of bovine pancreatic ribonuclease. Arch Biochem Biophys. 1962 Sep;Suppl 1:217–222. [PubMed] [Google Scholar]
- CRESTFIELD A. M., STEIN W. H., MOORE S. Properties and conformation of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2421–2428. [PubMed] [Google Scholar]
- Cafaro V., Bracale A., Di Maro A., Sorrentino S., D'Alessio G., Di Donato A. New muteins of RNase A with enhanced antitumor action. FEBS Lett. 1998 Oct 16;437(1-2):149–152. doi: 10.1016/s0014-5793(98)01221-6. [DOI] [PubMed] [Google Scholar]
- Cafaro V., De Lorenzo C., Piccoli R., Bracale A., Mastronicola M. R., Di Donato A., D'Alessio G. The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett. 1995 Feb 6;359(1):31–34. doi: 10.1016/0014-5793(94)01450-f. [DOI] [PubMed] [Google Scholar]
- Carroll S. F., Barbieri J. T., Collier R. J. Diphtheria toxin: purification and properties. Methods Enzymol. 1988;165:68–76. doi: 10.1016/s0076-6879(88)65014-2. [DOI] [PubMed] [Google Scholar]
- Ciglic M. I., Jackson P. J., Raillard S. A., Haugg M., Jermann T. M., Opitz J. G., Trabesinger-Rüf N., Benner S. A. Origin of dimeric structure in the ribonuclease superfamily. Biochemistry. 1998 Mar 24;37(12):4008–4022. doi: 10.1021/bi972203e. [DOI] [PubMed] [Google Scholar]
- D'Alessio G. Oligomer evolution in action? Nat Struct Biol. 1995 Jan;2(1):11–13. doi: 10.1038/nsb0195-11. [DOI] [PubMed] [Google Scholar]
- D'Alessio G. The evolutionary transition from monomeric to oligomeric proteins: tools, the environment, hypotheses. Prog Biophys Mol Biol. 1999;72(3):271–298. doi: 10.1016/s0079-6107(99)00009-7. [DOI] [PubMed] [Google Scholar]
- D'alessio G. Evolution of oligomeric proteins. The unusual case of a dimeric ribonuclease. Eur J Biochem. 1999 Dec;266(3):699–708. doi: 10.1046/j.1432-1327.1999.00912.x. [DOI] [PubMed] [Google Scholar]
- Di Donato A., Cafaro V., D'Alessio G. Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem. 1994 Jul 1;269(26):17394–17396. [PubMed] [Google Scholar]
- Di Donato A., Cafaro V., Romeo I., D'Alessio G. Hints on the evolutionary design of a dimeric RNase with special bioactions. Protein Sci. 1995 Aug;4(8):1470–1477. doi: 10.1002/pro.5560040804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis K. J., Morrison J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 1982;87:405–426. doi: 10.1016/s0076-6879(82)87025-0. [DOI] [PubMed] [Google Scholar]
- Fisher B. M., Ha J. H., Raines R. T. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66. Biochemistry. 1998 Sep 1;37(35):12121–12132. doi: 10.1021/bi980743l. [DOI] [PubMed] [Google Scholar]
- Fisher B. M., Schultz L. W., Raines R. T. Coulombic effects of remote subsites on the active site of ribonuclease A. Biochemistry. 1998 Dec 15;37(50):17386–17401. doi: 10.1021/bi981369s. [DOI] [PubMed] [Google Scholar]
- Gotte G., Libonati M. Two different forms of aggregated dimers of ribonuclease A. Biochim Biophys Acta. 1998 Jul 28;1386(1):106–112. doi: 10.1016/s0167-4838(98)00087-9. [DOI] [PubMed] [Google Scholar]
- Graziano G., Catanzano F., Giancola C., Barone G. DSC study of the thermal stability of S-protein and S-peptide/S-protein. Biochemistry. 1996 Oct 15;35(41):13386–13392. doi: 10.1021/bi960856+. [DOI] [PubMed] [Google Scholar]
- Grimsley G. R., Shaw K. L., Fee L. R., Alston R. W., Huyghues-Despointes B. M., Thurlkill R. L., Scholtz J. M., Pace C. N. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 1999 Sep;8(9):1843–1849. doi: 10.1110/ps.8.9.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HABER E., ANFINSEN C. B. Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease. J Biol Chem. 1961 Feb;236:422–424. [PubMed] [Google Scholar]
- Highbarger L. A., Gerlt J. A., Kenyon G. L. Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Biochemistry. 1996 Jan 9;35(1):41–46. doi: 10.1021/bi9518306. [DOI] [PubMed] [Google Scholar]
- Hummel C. F., Pincus M. R., Brandt-Rauf P. W., Frei G. M., Carty R. P. Reaction of (bromoacetamido)nucleoside affinity labels with ribonuclease A: evidence for steric control of reaction specificity and alkylation rate. Biochemistry. 1987 Jan 13;26(1):135–146. doi: 10.1021/bi00375a020. [DOI] [PubMed] [Google Scholar]
- Kao C. M., Pieper R., Cane D. E., Khosla C. Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. Biochemistry. 1996 Sep 24;35(38):12363–12368. doi: 10.1021/bi9616312. [DOI] [PubMed] [Google Scholar]
- Kim J. S., Soucek J., Matousek J., Raines R. T. Structural basis for the biological activities of bovine seminal ribonuclease. J Biol Chem. 1995 May 5;270(18):10525–10530. doi: 10.1074/jbc.270.18.10525. [DOI] [PubMed] [Google Scholar]
- Larimer F. W., Lee E. H., Mural R. J., Soper T. S., Hartman F. C. Intersubunit location of the active site of ribulose-bisphosphate carboxylase/oxygenase as determined by in vivo hybridization of site-directed mutants. J Biol Chem. 1987 Nov 15;262(32):15327–15329. [PubMed] [Google Scholar]
- Li Y., Feng L., Kirsch J. F. Kinetic and spectroscopic investigations of wild-type and mutant forms of apple 1-aminocyclopropane-1-carboxylate synthase. Biochemistry. 1997 Dec 9;36(49):15477–15488. doi: 10.1021/bi971625l. [DOI] [PubMed] [Google Scholar]
- Liu Y., Hart P. J., Schlunegger M. P., Eisenberg D. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3437–3442. doi: 10.1073/pnas.95.7.3437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loladze V. V., Ibarra-Molero B., Sanchez-Ruiz J. M., Makhatadze G. I. Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry. 1999 Dec 14;38(50):16419–16423. doi: 10.1021/bi992271w. [DOI] [PubMed] [Google Scholar]
- Mazzarella L., Capasso S., Demasi D., Di Lorenzo G., Mattia C. A., Zagari A. Bovine seminal ribonuclease: structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Jul 1;49(Pt 4):389–402. doi: 10.1107/S0907444993003403. [DOI] [PubMed] [Google Scholar]
- Messmore J. M., Holmgren S. K., Grilley J. E., Raines R. T. Sulfur shuffle: modulating enzymatic activity by thiol-disulfide interchange. Bioconjug Chem. 2000 May-Jun;11(3):408–413. doi: 10.1021/bc990142m. [DOI] [PubMed] [Google Scholar]
- Perl D., Mueller U., Heinemann U., Schmid F. X. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol. 2000 May;7(5):380–383. doi: 10.1038/75151. [DOI] [PubMed] [Google Scholar]
- Piccoli R., Di Gaetano S., De Lorenzo C., Grauso M., Monaco C., Spalletti-Cernia D., Laccetti P., Cinátl J., Matousek J., D'Alessio G. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7768–7773. doi: 10.1073/pnas.96.14.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piccoli R., Tamburrini M., Piccialli G., Di Donato A., Parente A., D'Alessio G. The dual-mode quaternary structure of seminal RNase. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1870–1874. doi: 10.1073/pnas.89.5.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quirk D. J., Park C., Thompson J. E., Raines R. T. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes. Biochemistry. 1998 Dec 22;37(51):17958–17964. doi: 10.1021/bi981688j. [DOI] [PubMed] [Google Scholar]
- RICHARDS F. M. Titration of amino groups released during the digestion of ribonuclease by subtilisin. C R Trav Lab Carlsberg Chim. 1955;29(17-19):322–328. [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- Russo N., Antignani A., D'Alessio G. In vitro evolution of a dimeric variant of human pancreatic ribonuclease. Biochemistry. 2000 Apr 4;39(13):3585–3591. doi: 10.1021/bi992367q. [DOI] [PubMed] [Google Scholar]
- Russo N., Shapiro R. Potent inhibition of mammalian ribonucleases by 3', 5'-pyrophosphate-linked nucleotides. J Biol Chem. 1999 May 21;274(21):14902–14908. doi: 10.1074/jbc.274.21.14902. [DOI] [PubMed] [Google Scholar]
- SELA M., ANFINSEN C. B., HARRINGTON W. F. The correlation of ribonuclease activity with specific aspects of tertiary structure. Biochim Biophys Acta. 1957 Dec;26(3):502–512. doi: 10.1016/0006-3002(57)90096-3. [DOI] [PubMed] [Google Scholar]
- Schlunegger M. P., Bennett M. J., Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem. 1997;50:61–122. doi: 10.1016/s0065-3233(08)60319-8. [DOI] [PubMed] [Google Scholar]
- Shoemaker K. R., Fairman R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. The C-peptide helix from ribonuclease A considered as an autonomous folding unit. Cold Spring Harb Symp Quant Biol. 1987;52:391–398. doi: 10.1101/sqb.1987.052.01.045. [DOI] [PubMed] [Google Scholar]
- Sorrentino S., Barone R., Bucci E., Gotte G., Russo N., Libonati M., D'Alessio G. The two dimeric forms of RNase A. FEBS Lett. 2000 Jan 21;466(1):35–39. doi: 10.1016/s0014-5793(99)01742-1. [DOI] [PubMed] [Google Scholar]
- Spector S., Wang M., Carp S. A., Robblee J., Hendsch Z. S., Fairman R., Tidor B., Raleigh D. P. Rational modification of protein stability by the mutation of charged surface residues. Biochemistry. 2000 Feb 8;39(5):872–879. doi: 10.1021/bi992091m. [DOI] [PubMed] [Google Scholar]
- Tobias K. E., Kahana C. Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry. 1993 Jun 8;32(22):5842–5847. doi: 10.1021/bi00073a017. [DOI] [PubMed] [Google Scholar]
- Warshel A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J Biol Chem. 1998 Oct 16;273(42):27035–27038. doi: 10.1074/jbc.273.42.27035. [DOI] [PubMed] [Google Scholar]
- Wente S. R., Schachman H. K. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1987 Jan;84(1):31–35. doi: 10.1073/pnas.84.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkowski A., Joshi A., Smith S. Fatty acid synthase: in vitro complementation of inactive mutants. Biochemistry. 1996 Aug 13;35(32):10569–10575. doi: 10.1021/bi960910m. [DOI] [PubMed] [Google Scholar]
- delCardayré S. B., Raines R. T. Structural determinants of enzymatic processivity. Biochemistry. 1994 May 24;33(20):6031–6037. doi: 10.1021/bi00186a001. [DOI] [PubMed] [Google Scholar]
- delCardayré S. B., Ribó M., Yokel E. M., Quirk D. J., Rutter W. J., Raines R. T. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261–273. doi: 10.1093/protein/8.3.261. [DOI] [PubMed] [Google Scholar]
- van Gent D. C., Vink C., Groeneger A. A., Plasterk R. H. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 1993 Aug;12(8):3261–3267. doi: 10.1002/j.1460-2075.1993.tb05995.x. [DOI] [PMC free article] [PubMed] [Google Scholar]