Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2489–2496. doi: 10.1110/ps.9.12.2489

Structural changes in alpha-synuclein affect its chaperone-like activity in vitro.

T D Kim 1, S R Paik 1, C H Yang 1, J Kim 1
PMCID: PMC2144529  PMID: 11206070

Abstract

Alpha-synuclein, a major constituent of Lewy bodies (LBs) in Parkinson's disease (PD), has been implicated to play a critical role in synaptic events, such as neuronal plasticity during development, learning, and degeneration under pathological conditions, although the physiological function of alpha-synuclein has not yet been established. We here present biochemical evidence that recombinant alpha-synuclein has a chaperone-like function against thermal and chemical stress in vitro. In our experiments, alpha-synuclein protected glutathione S-transferase (GST) and aldolase from heat-induced precipitation, and alpha-lactalbumin and bovine serum albumin from dithiothreitol (DTT)-induced precipitation like other molecular chaperones. Moreover, preheating of alpha-synuclein, which is believed to reorganize the molecular surface of alpha-synuclein, increased the chaperone-like activity. Interestingly, in organic solvents, which promotes the formation of secondary structure, alpha-synuclein aggregated more easily than in its native condition, which eventually might abrogate the chaperone-like function of the protein. In addition, alpha-synuclein was also rapidly and significantly precipitated by heat in the presence of Zn2+ in vitro, whereas it was not affected by the presence of Ca2+ or Mg2+. Circular dichroism spectra confirmed that alpha-synuclein underwent conformational change in the presence of Zn2+. Taken together, our data suggest that alpha-synuclein could act as a molecular chaperone, and that the conformational change of the alpha-synuclein could explain the aggregation kinetics of alpha-synuclein, which may be related to the abolishment of the chaperonic-like activity.

Full Text

The Full Text of this article is available as a PDF (403.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrigo A. P. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 1998 Jan;379(1):19–26. [PubMed] [Google Scholar]
  2. Baba M., Nakajo S., Tu P. H., Tomita T., Nakaya K., Lee V. M., Trojanowski J. Q., Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998 Apr;152(4):879–884. [PMC free article] [PubMed] [Google Scholar]
  3. Brazil B. T., Ybarra J., Horowitz P. M. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. J Biol Chem. 1998 Feb 6;273(6):3257–3263. doi: 10.1074/jbc.273.6.3257. [DOI] [PubMed] [Google Scholar]
  4. Burgio M. R., Kim C. J., Dow C. C., Koretz J. F. Correlation between the chaperone-like activity and aggregate size of alpha-crystallin with increasing temperature. Biochem Biophys Res Commun. 2000 Feb 16;268(2):426–432. doi: 10.1006/bbrc.1999.2036. [DOI] [PubMed] [Google Scholar]
  5. Carver J. A., Aquilina J. A., Cooper P. G., Williams G. A., Truscott R. J. Alpha-crystallin: molecular chaperone and protein surfactant. Biochim Biophys Acta. 1994 Feb 16;1204(2):195–206. doi: 10.1016/0167-4838(94)90009-4. [DOI] [PubMed] [Google Scholar]
  6. Chadli A., Ladjimi M. M., Baulieu E. E., Catelli M. G. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J Biol Chem. 1999 Feb 12;274(7):4133–4139. doi: 10.1074/jbc.274.7.4133. [DOI] [PubMed] [Google Scholar]
  7. Clayton D. F., George J. M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998 Jun;21(6):249–254. doi: 10.1016/s0166-2236(97)01213-7. [DOI] [PubMed] [Google Scholar]
  8. Conway K. A., Harper J. D., Lansbury P. T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998 Nov;4(11):1318–1320. doi: 10.1038/3311. [DOI] [PubMed] [Google Scholar]
  9. Conway K. A., Lee S. J., Rochet J. C., Ding T. T., Williamson R. E., Lansbury P. T., Jr Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):571–576. doi: 10.1073/pnas.97.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Datta S. A., Rao C. M. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates. J Biol Chem. 1999 Dec 3;274(49):34773–34778. doi: 10.1074/jbc.274.49.34773. [DOI] [PubMed] [Google Scholar]
  11. Davidson W. S., Jonas A., Clayton D. F., George J. M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998 Apr 17;273(16):9443–9449. doi: 10.1074/jbc.273.16.9443. [DOI] [PubMed] [Google Scholar]
  12. Dobson C. M., Karplus M. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol. 1999 Feb;9(1):92–101. doi: 10.1016/s0959-440x(99)80012-8. [DOI] [PubMed] [Google Scholar]
  13. Ehrnsperger M., Gräber S., Gaestel M., Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 1997 Jan 15;16(2):221–229. doi: 10.1093/emboj/16.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goedert M., Spillantini M. G., Davies S. W. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol. 1998 Oct;8(5):619–632. doi: 10.1016/s0959-4388(98)80090-1. [DOI] [PubMed] [Google Scholar]
  15. Hashimoto M., Takeda A., Hsu L. J., Takenouchi T., Masliah E. Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem. 1999 Oct 8;274(41):28849–28852. doi: 10.1074/jbc.274.41.28849. [DOI] [PubMed] [Google Scholar]
  16. Haslbeck M., Walke S., Stromer T., Ehrnsperger M., White H. E., Chen S., Saibil H. R., Buchner J. Hsp26: a temperature-regulated chaperone. EMBO J. 1999 Dec 1;18(23):6744–6751. doi: 10.1093/emboj/18.23.6744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heintz N., Zoghbi H. alpha-Synuclein--a link between Parkinson and Alzheimer diseases? Nat Genet. 1997 Aug;16(4):325–327. doi: 10.1038/ng0897-325. [DOI] [PubMed] [Google Scholar]
  18. Hook D. W., Harding J. J. Molecular chaperones protect catalase against thermal stress. Eur J Biochem. 1997 Jul 1;247(1):380–385. doi: 10.1111/j.1432-1033.1997.00380.x. [DOI] [PubMed] [Google Scholar]
  19. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horwitz J., Huang Q. L., Ding L., Bova M. P. Lens alpha-crystallin: chaperone-like properties. Methods Enzymol. 1998;290:365–383. doi: 10.1016/s0076-6879(98)90032-5. [DOI] [PubMed] [Google Scholar]
  21. Huang X., Atwood C. S., Moir R. D., Hartshorn M. A., Vonsattel J. P., Tanzi R. E., Bush A. I. Zinc-induced Alzheimer's Abeta1-40 aggregation is mediated by conformational factors. J Biol Chem. 1997 Oct 17;272(42):26464–26470. doi: 10.1074/jbc.272.42.26464. [DOI] [PubMed] [Google Scholar]
  22. Humphreys D. T., Carver J. A., Easterbrook-Smith S. B., Wilson M. R. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem. 1999 Mar 12;274(11):6875–6881. doi: 10.1074/jbc.274.11.6875. [DOI] [PubMed] [Google Scholar]
  23. Humphreys D., Hochgrebe T. T., Easterbrook-Smith S. B., Tenniswood M. P., Wilson M. R. Effects of clusterin overexpression on TNFalpha- and TGFbeta-mediated death of L929 cells. Biochemistry. 1997 Dec 9;36(49):15233–15243. doi: 10.1021/bi9703507. [DOI] [PubMed] [Google Scholar]
  24. Jensen P. H., Nielsen M. S., Jakes R., Dotti C. G., Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem. 1998 Oct 9;273(41):26292–26294. doi: 10.1074/jbc.273.41.26292. [DOI] [PubMed] [Google Scholar]
  25. Kanda S., Bishop J. F., Eglitis M. A., Yang Y., Mouradian M. M. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience. 2000;97(2):279–284. doi: 10.1016/s0306-4522(00)00077-4. [DOI] [PubMed] [Google Scholar]
  26. Kaytor M. D., Warren S. T. Aberrant protein deposition and neurological disease. J Biol Chem. 1999 Dec 31;274(53):37507–37510. doi: 10.1074/jbc.274.53.37507. [DOI] [PubMed] [Google Scholar]
  27. Kim J. Evidence that the precursor protein of non-A beta component of Alzheimer's disease amyloid (NACP) has an extended structure primarily composed of random-coil. Mol Cells. 1997 Feb 28;7(1):78–83. [PubMed] [Google Scholar]
  28. Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J. T., Schöls L., Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet. 1998 Feb;18(2):106–108. doi: 10.1038/ng0298-106. [DOI] [PubMed] [Google Scholar]
  29. Lee G. J., Vierling E. Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins. Methods Enzymol. 1998;290:350–365. doi: 10.1016/s0076-6879(98)90031-3. [DOI] [PubMed] [Google Scholar]
  30. Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezey E., Harta G., Brownstein M. J., Jonnalagada S., Chernova T. The ubiquitin pathway in Parkinson's disease. Nature. 1998 Oct 1;395(6701):451–452. doi: 10.1038/26652. [DOI] [PubMed] [Google Scholar]
  31. Lindner R. A., Kapur A., Mariani M., Titmuss S. J., Carver J. A. Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem. 1998 Nov 15;258(1):170–183. doi: 10.1046/j.1432-1327.1998.2580170.x. [DOI] [PubMed] [Google Scholar]
  32. Masliah E., Rockenstein E., Veinbergs I., Mallory M., Hashimoto M., Takeda A., Sagara Y., Sisk A., Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000 Feb 18;287(5456):1265–1269. doi: 10.1126/science.287.5456.1265. [DOI] [PubMed] [Google Scholar]
  33. Michel D., Moyse E., Trembleau A., Jourdan F., Brun G. Clusterin/ApoJ expression is associated with neuronal apoptosis in the olfactory mucosa of the adult mouse. J Cell Sci. 1997 Jul;110(Pt 14):1635–1645. doi: 10.1242/jcs.110.14.1635. [DOI] [PubMed] [Google Scholar]
  34. Paik S. R., Lee J. H., Kim D. H., Chang C. S., Kim Y. S. Self-oligomerization of NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer's disease amyloid, observed in the presence of a C-terminal A beta fragment (residues 25-35). FEBS Lett. 1998 Jan 2;421(1):73–76. doi: 10.1016/s0014-5793(97)01537-8. [DOI] [PubMed] [Google Scholar]
  35. Paik S. R., Shin H. J., Lee J. H., Chang C. S., Kim J. Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J. 1999 Jun 15;340(Pt 3):821–828. [PMC free article] [PubMed] [Google Scholar]
  36. Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997 Jun 27;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045. [DOI] [PubMed] [Google Scholar]
  37. Rajaraman K., Raman B., Rao C. M. Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem. 1996 Nov 1;271(44):27595–27600. doi: 10.1074/jbc.271.44.27595. [DOI] [PubMed] [Google Scholar]
  38. Raman B., Rao C. M. Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem. 1997 Sep 19;272(38):23559–23564. doi: 10.1074/jbc.272.38.23559. [DOI] [PubMed] [Google Scholar]
  39. Rao P. V., Horwitz J., Zigler J. S., Jr Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun. 1993 Feb 15;190(3):786–793. doi: 10.1006/bbrc.1993.1118. [DOI] [PubMed] [Google Scholar]
  40. Serpell L. C., Berriman J., Jakes R., Goedert M., Crowther R. A. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4897–4902. doi: 10.1073/pnas.97.9.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Souza J. M., Giasson B. I., Lee V. M., Ischiropoulos H. Chaperone-like activity of synucleins. FEBS Lett. 2000 May 26;474(1):116–119. doi: 10.1016/s0014-5793(00)01563-5. [DOI] [PubMed] [Google Scholar]
  42. Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M., Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6469–6473. doi: 10.1073/pnas.95.11.6469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Surewicz W. K., Olesen P. R. On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy. Biochemistry. 1995 Aug 1;34(30):9655–9660. doi: 10.1021/bi00030a001. [DOI] [PubMed] [Google Scholar]
  44. Takeda A., Hashimoto M., Mallory M., Sundsumo M., Hansen L., Sisk A., Masliah E. Abnormal distribution of the non-Abeta component of Alzheimer's disease amyloid precursor/alpha-synuclein in Lewy body disease as revealed by proteinase K and formic acid pretreatment. Lab Invest. 1998 Sep;78(9):1169–1177. [PubMed] [Google Scholar]
  45. Trojanowski J. Q., Lee V. M. Transgenic models of tauopathies and synucleinopathies. Brain Pathol. 1999 Oct;9(4):733–739. doi: 10.1111/j.1750-3639.1999.tb00554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Uéda K., Fukushima H., Masliah E., Xia Y., Iwai A., Yoshimoto M., Otero D. A., Kondo J., Ihara Y., Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11282–11286. doi: 10.1073/pnas.90.23.11282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weinreb P. H., Zhen W., Poon A. W., Conway K. A., Lansbury P. T., Jr NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996 Oct 29;35(43):13709–13715. doi: 10.1021/bi961799n. [DOI] [PubMed] [Google Scholar]
  48. Wolozin B., Behl C. Mechanisms of neurodegenerative disorders: Part 1: protein aggregates. Arch Neurol. 2000 Jun;57(6):793–796. doi: 10.1001/archneur.57.6.793. [DOI] [PubMed] [Google Scholar]
  49. Yonehara M., Minami Y., Kawata Y., Nagai J., Yahara I. Heat-induced chaperone activity of HSP90. J Biol Chem. 1996 Feb 2;271(5):2641–2645. doi: 10.1074/jbc.271.5.2641. [DOI] [PubMed] [Google Scholar]
  50. da Costa C. A., Ancolio K., Checler F. Wild-type but not Parkinson's disease-related ala-53 --> Thr mutant alpha -synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem. 2000 Aug 4;275(31):24065–24069. doi: 10.1074/jbc.M002413200. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES