Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):332–343. doi: 10.1110/ps.9.2.332

Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry.

R M Whittal 1, H L Ball 1, F E Cohen 1, A L Burlingame 1, S B Prusiner 1, M A Baldwin 1
PMCID: PMC2144551  PMID: 10716185

Abstract

Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.

Full Text

The Full Text of this article is available as a PDF (620.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Kamen B. A., Rothberg K. G., Lacey S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. doi: 10.1126/science.1310359. [DOI] [PubMed] [Google Scholar]
  2. Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E., Bush A. I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998 May 22;273(21):12817–12826. doi: 10.1074/jbc.273.21.12817. [DOI] [PubMed] [Google Scholar]
  3. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P. E., Kruck T., von Bohlen A., Schulz-Schaeffer W. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 18;390(6661):684–687. doi: 10.1038/37783. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Schulz-Schaeffer W. J., Schmidt B., Kretzschmar H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997 Jul;146(1):104–112. doi: 10.1006/exnr.1997.6505. [DOI] [PubMed] [Google Scholar]
  5. Büeler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., Weissmann C. Mice devoid of PrP are resistant to scrapie. Cell. 1993 Jul 2;73(7):1339–1347. doi: 10.1016/0092-8674(93)90360-3. [DOI] [PubMed] [Google Scholar]
  6. Collinge J., Whittington M. A., Sidle K. C., Smith C. J., Palmer M. S., Clarke A. R., Jefferys J. G. Prion protein is necessary for normal synaptic function. Nature. 1994 Jul 28;370(6487):295–297. doi: 10.1038/370295a0. [DOI] [PubMed] [Google Scholar]
  7. Cudkowicz M. E., Brown R. H., Jr An update on superoxide dismutase 1 in familial amyotrophic lateral sclerosis. J Neurol Sci. 1996 Aug;139 (Suppl):10–15. doi: 10.1016/0022-510x(96)00084-6. [DOI] [PubMed] [Google Scholar]
  8. Donne D. G., Viles J. H., Groth D., Mehlhorn I., James T. L., Cohen F. E., Prusiner S. B., Wright P. E., Dyson H. J. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452–13457. doi: 10.1073/pnas.94.25.13452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freskgård P. O., Mårtensson L. G., Jonasson P., Jonsson B. H., Carlsson U. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry. 1994 Nov 29;33(47):14281–14288. doi: 10.1021/bi00251a041. [DOI] [PubMed] [Google Scholar]
  10. Gabriel J. M., Oesch B., Kretzschmar H., Scott M., Prusiner S. B. Molecular cloning of a candidate chicken prion protein. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9097–9101. doi: 10.1073/pnas.89.19.9097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris D. A., Falls D. L., Johnson F. A., Fischbach G. D. A prion-like protein from chicken brain copurifies with an acetylcholine receptor-inducing activity. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7664–7668. doi: 10.1073/pnas.88.17.7664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herms J. W., Kretzchmar H. A., Titz S., Keller B. U. Patch-clamp analysis of synaptic transmission to cerebellar purkinje cells of prion protein knockout mice. Eur J Neurosci. 1995 Dec 1;7(12):2508–2512. doi: 10.1111/j.1460-9568.1995.tb01049.x. [DOI] [PubMed] [Google Scholar]
  13. Hornshaw M. P., McDermott J. R., Candy J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):621–629. doi: 10.1006/bbrc.1995.1233. [DOI] [PubMed] [Google Scholar]
  14. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  15. James T. L., Liu H., Ulyanov N. B., Farr-Jones S., Zhang H., Donne D. G., Kaneko K., Groth D., Mehlhorn I., Prusiner S. B. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10086–10091. doi: 10.1073/pnas.94.19.10086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimberlin R. H., Millson G. C., Bountiff L., Collis S. C. A comparison of the biochemical changes induced in mouse brain cuprizone toxicity and by scrapie infection. J Comp Pathol. 1974 Apr;84(2):263–270. doi: 10.1016/0021-9975(74)90067-x. [DOI] [PubMed] [Google Scholar]
  17. Last A. M., Robinson C. V. Protein folding and interactions revealed by mass spectrometry. Curr Opin Chem Biol. 1999 Oct;3(5):564–570. doi: 10.1016/s1367-5931(99)00009-5. [DOI] [PubMed] [Google Scholar]
  18. Lei Q. P., Cui X., Kurtz D. M., Jr, Amster I. J., Chernushevich I. V., Standing K. G. Electrospray mass spectrometry studies of non-heme iron-containing proteins. Anal Chem. 1998 May 1;70(9):1838–1846. doi: 10.1021/ac971181z. [DOI] [PubMed] [Google Scholar]
  19. Lipp H. P., Stagliar-Bozicevic M., Fischer M., Wolfer D. P. A 2-year longitudinal study of swimming navigation in mice devoid of the prion protein: no evidence for neurological anomalies or spatial learning impairments. Behav Brain Res. 1998 Sep;95(1):47–54. doi: 10.1016/s0166-4328(97)00209-x. [DOI] [PubMed] [Google Scholar]
  20. Lledo P. M., Tremblay P., DeArmond S. J., Prusiner S. B., Nicoll R. A. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2403–2407. doi: 10.1073/pnas.93.6.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loo J. A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev. 1997 Jan-Feb;16(1):1–23. doi: 10.1002/(SICI)1098-2787(1997)16:1<1::AID-MAS1>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  22. Marcotte E. M., Eisenberg D. Chicken prion tandem repeats form a stable, protease-resistant domain. Biochemistry. 1999 Jan 12;38(2):667–676. doi: 10.1021/bi981487f. [DOI] [PubMed] [Google Scholar]
  23. McKenzie D., Bartz J., Mirwald J., Olander D., Marsh R., Aiken J. Reversibility of scrapie inactivation is enhanced by copper. J Biol Chem. 1998 Oct 2;273(40):25545–25547. doi: 10.1074/jbc.273.40.25545. [DOI] [PubMed] [Google Scholar]
  24. Mineo C., Anderson R. G. A vacuolar-type proton ATPase mediates acidification of plasmalemmal vesicles during potocytosis. Exp Cell Res. 1996 May 1;224(2):237–242. doi: 10.1006/excr.1996.0133. [DOI] [PubMed] [Google Scholar]
  25. Miura T., Hori-i A., Mototani H., Takeuchi H. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry. 1999 Aug 31;38(35):11560–11569. doi: 10.1021/bi9909389. [DOI] [PubMed] [Google Scholar]
  26. Miura T., Hori-i A., Takeuchi H. Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 1996 Nov 4;396(2-3):248–252. doi: 10.1016/0014-5793(96)01104-0. [DOI] [PubMed] [Google Scholar]
  27. Multhaup G., Schlicksupp A., Hesse L., Beher D., Ruppert T., Masters C. L., Beyreuther K. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I) Science. 1996 Mar 8;271(5254):1406–1409. doi: 10.1126/science.271.5254.1406. [DOI] [PubMed] [Google Scholar]
  28. Muramoto T., Scott M., Cohen F. E., Prusiner S. B. Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15457–15462. doi: 10.1073/pnas.93.26.15457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nishida N., Katamine S., Shigematsu K., Nakatani A., Sakamoto N., Hasegawa S., Nakaoke R., Atarashi R., Kataoka Y., Miyamoto T. Prion protein is necessary for latent learning and long-term memory retention. Cell Mol Neurobiol. 1997 Oct;17(5):537–545. doi: 10.1023/a:1026315006619. [DOI] [PubMed] [Google Scholar]
  30. Oesch B., Westaway D., Wälchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985 Apr;40(4):735–746. doi: 10.1016/0092-8674(85)90333-2. [DOI] [PubMed] [Google Scholar]
  31. Owen F., Poulter M., Lofthouse R., Collinge J., Crow T. J., Risby D., Baker H. F., Ridley R. M., Hsiao K., Prusiner S. B. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet. 1989 Jan 7;1(8628):51–52. doi: 10.1016/s0140-6736(89)91713-3. [DOI] [PubMed] [Google Scholar]
  32. Pan K. M., Stahl N., Prusiner S. B. Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci. 1992 Oct;1(10):1343–1352. doi: 10.1002/pro.5560011014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parge H. E., Hallewell R. A., Tainer J. A. Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6109–6113. doi: 10.1073/pnas.89.13.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pattison I. H., Jebbett J. N. Clinical and histological observations on cuprizone toxicity and scrapie in mice. Res Vet Sci. 1971 Jul;12(4):378–380. [PubMed] [Google Scholar]
  35. Pauly P. C., Harris D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998 Dec 11;273(50):33107–33110. doi: 10.1074/jbc.273.50.33107. [DOI] [PubMed] [Google Scholar]
  36. Potier N., Donald L. J., Chernushevich I., Ayed A., Ens W., Arrowsmith C. H., Standing K. G., Duckworth H. W. Study of a noncovalent trp repressor: DNA operator complex by electrospray ionization time-of-flight mass spectrometry. Protein Sci. 1998 Jun;7(6):1388–1395. doi: 10.1002/pro.5560070615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Prusiner S. B., Groth D., Serban A., Koehler R., Foster D., Torchia M., Burton D., Yang S. L., DeArmond S. J. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10608–10612. doi: 10.1073/pnas.90.22.10608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
  39. Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997 Aug 18;413(2):282–288. doi: 10.1016/s0014-5793(97)00920-4. [DOI] [PubMed] [Google Scholar]
  40. Shyng S. L., Huber M. T., Harris D. A. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem. 1993 Jul 25;268(21):15922–15928. [PubMed] [Google Scholar]
  41. Smith C. J., Drake A. F., Banfield B. A., Bloomberg G. B., Palmer M. S., Clarke A. R., Collinge J. Conformational properties of the prion octa-repeat and hydrophobic sequences. FEBS Lett. 1997 Apr 1;405(3):378–384. doi: 10.1016/s0014-5793(97)00220-2. [DOI] [PubMed] [Google Scholar]
  42. Stöckel J., Safar J., Wallace A. C., Cohen F. E., Prusiner S. B. Prion protein selectively binds copper(II) ions. Biochemistry. 1998 May 19;37(20):7185–7193. doi: 10.1021/bi972827k. [DOI] [PubMed] [Google Scholar]
  43. Sulkowski E. The saga of IMAC and MIT. Bioessays. 1989 May;10(5):170–175. doi: 10.1002/bies.950100508. [DOI] [PubMed] [Google Scholar]
  44. Supattapone S., Bosque P., Muramoto T., Wille H., Aagaard C., Peretz D., Nguyen H. O., Heinrich C., Torchia M., Safar J. Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell. 1999 Mar 19;96(6):869–878. doi: 10.1016/s0092-8674(00)80596-6. [DOI] [PubMed] [Google Scholar]
  45. Taraboulos A., Raeber A. J., Borchelt D. R., Serban D., Prusiner S. B. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell. 1992 Aug;3(8):851–863. doi: 10.1091/mbc.3.8.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., Avraham D. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol. 1995 Apr;129(1):121–132. doi: 10.1083/jcb.129.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A., Manson J. C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996 Apr 18;380(6575):639–642. doi: 10.1038/380639a0. [DOI] [PubMed] [Google Scholar]
  48. Veenstra T. D., Johnson K. L., Tomlinson A. J., Craig T. A., Kumar R., Naylor S. Zinc-induced conformational changes in the DNA-binding domain of the vitamin D receptor determined by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 1998 Jan;9(1):8–14. doi: 10.1016/S1044-0305(97)00229-8. [DOI] [PubMed] [Google Scholar]
  49. Vey M., Pilkuhn S., Wille H., Nixon R., DeArmond S. J., Smart E. J., Anderson R. G., Taraboulos A., Prusiner S. B. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14945–14949. doi: 10.1073/pnas.93.25.14945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Viles J. H., Cohen F. E., Prusiner S. B., Goodin D. B., Wright P. E., Dyson H. J. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2042–2047. doi: 10.1073/pnas.96.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Volz J., Bosch F. U., Wunderlin M., Schuhmacher M., Melchers K., Bensch K., Steinhilber W., Schäfer K. P., Tóth G., Penke B. Molecular characterization of metal-binding polypeptide domains by electrospray ionization mass spectrometry and metal chelate affinity chromatography. J Chromatogr A. 1998 Mar 20;800(1):29–37. doi: 10.1016/s0021-9673(97)00877-7. [DOI] [PubMed] [Google Scholar]
  52. Yu X., Wojciechowski M., Fenselau C. Assessment of metals in reconstituted metallothioneins by electrospray mass spectrometry. Anal Chem. 1993 May 15;65(10):1355–1359. doi: 10.1021/ac00058a010. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES