Abstract
A dominant feature of folding of cytochrome c is the presence of nonnative His-heme kinetic traps, which either pre-exist in the unfolded protein or are formed soon after initiation of folding. The kinetically trapped species can constitute the majority of folding species, and their breakdown limits the rate of folding to the native state. A temperature jump (T-jump) relaxation technique has been used to compare the unfolding/folding kinetics of yeast iso-2 cytochrome c and a genetically engineered double mutant that lacks His-heme kinetic traps, H33N,H39K iso-2. The results show that the thermodynamic properties of the transition states are very similar. A single relaxation time tau(obs) is observed for both proteins by absorbance changes at 287 nm, a measure of solvent exclusion from aromatic residues. At temperatures near Tm, the midpoint of the thermal unfolding transitions, tau(obs) is four to eight times faster for H33N,H39K iso-2 (tau(obs) approximately 4-10 ms) than for iso-2 (tau(obs) approximately 20-30 ms). T-jumps show that there are no kinetically unresolved (tau < 1-3 micros T-jump dead time) "burst" phases for either protein. Using a two-state model, the folding (k(f)) and unfolding (k(u)) rate constants and the thermodynamic activation parameters standard deltaGf, standard deltaGu, standard deltaHf, standard deltaHu, standard deltaSf, standard deltaSu are evaluated by fitting the data to a function describing the temperature dependence of the apparent rate constant k(obs) (= tau(obs)(-1)) = k(f) + k(u). The results show that there is a small activation enthalpy for folding, suggesting that the barrier to folding is largely entropic. In the "new view," a purely entropic kinetic barrier to folding is consistent with a smooth funnel folding landscape.
Full Text
The Full Text of this article is available as a PDF (167.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chan C. K., Hu Y., Takahashi S., Rousseau D. L., Eaton W. A., Hofrichter J. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1779–1784. doi: 10.1073/pnas.94.5.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen E., Wood M. J., Fink A. L., Kliger D. S. Time-resolved circular dichroism studies of protein folding intermediates of cytochrome c. Biochemistry. 1998 Apr 21;37(16):5589–5598. doi: 10.1021/bi972369f. [DOI] [PubMed] [Google Scholar]
- Colón W., Wakem L. P., Sherman F., Roder H. Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry. 1997 Oct 14;36(41):12535–12541. doi: 10.1021/bi971697c. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Muñoz V., Thompson P. A., Chan C. K., Hofrichter J. Submillisecond kinetics of protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):10–14. doi: 10.1016/s0959-440x(97)80003-6. [DOI] [PubMed] [Google Scholar]
- Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3709–3713. doi: 10.1073/pnas.94.8.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldbeck R. A., Thomas Y. G., Chen E., Esquerra R. M., Kliger D. S. Multiple pathways on a protein-folding energy landscape: kinetic evidence. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2782–2787. doi: 10.1073/pnas.96.6.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Szabo A., Eaton W. A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11615–11617. doi: 10.1073/pnas.93.21.11615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob M., Geeves M., Holtermann G., Schmid F. X. Diffusional barrier crossing in a two-state protein folding reaction. Nat Struct Biol. 1999 Oct;6(10):923–926. doi: 10.1038/13289. [DOI] [PubMed] [Google Scholar]
- Jacob M., Schmid F. X. Protein folding as a diffusional process. Biochemistry. 1999 Oct 19;38(42):13773–13779. doi: 10.1021/bi991503o. [DOI] [PubMed] [Google Scholar]
- Jones C. M., Henry E. R., Hu Y., Chan C. K., Luck S. D., Bhuyan A., Roder H., Hofrichter J., Eaton W. A. Fast events in protein folding initiated by nanosecond laser photolysis. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11860–11864. doi: 10.1073/pnas.90.24.11860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karplus M., Weaver D. L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 1994 Apr;3(4):650–668. doi: 10.1002/pro.5560030413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liggins J. R., Lo T. P., Brayer G. D., Nall B. T. Thermal stability of hydrophobic heme pocket variants of oxidized cytochrome c. Protein Sci. 1999 Dec;8(12):2645–2654. doi: 10.1110/ps.8.12.2645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liggins J. R., Sherman F., Mathews A. J., Nall B. T. Differential scanning calorimetric study of the thermal unfolding transitions of yeast iso-1 and iso-2 cytochromes c and three composite isozymes. Biochemistry. 1994 Aug 9;33(31):9209–9219. doi: 10.1021/bi00197a024. [DOI] [PubMed] [Google Scholar]
- McGee W. A., Nall B. T. Refolding rate of stability-enhanced cytochrome c is independent of thermodynamic driving force. Protein Sci. 1998 May;7(5):1071–1082. doi: 10.1002/pro.5560070501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGee W. A., Rosell F. I., Liggins J. R., Rodriguez-Ghidarpour S., Luo Y., Chen J., Brayer G. D., Mauk A. G., Nall B. T. Thermodynamic cycles as probes of structure in unfolded proteins. Biochemistry. 1996 Feb 13;35(6):1995–2007. doi: 10.1021/bi951228f. [DOI] [PubMed] [Google Scholar]
- Nall B. T., Landers T. A. Guanidine hydrochloride induced unfolding of yeast iso-2 cytochrome c. Biochemistry. 1981 Sep 15;20(19):5403–5411. doi: 10.1021/bi00522a008. [DOI] [PubMed] [Google Scholar]
- Nall B. T. Structural intermediates in folding of yeast iso-2 cytochrome c. Biochemistry. 1983 Mar 15;22(6):1423–1429. doi: 10.1021/bi00275a016. [DOI] [PubMed] [Google Scholar]
- Pascher T., Chesick J. P., Winkler J. R., Gray H. B. Protein folding triggered by electron transfer. Science. 1996 Mar 15;271(5255):1558–1560. doi: 10.1126/science.271.5255.1558. [DOI] [PubMed] [Google Scholar]
- Pierce M. M., Nall B. T. Fast folding of cytochrome c. Protein Sci. 1997 Mar;6(3):618–627. doi: 10.1002/pro.5560060311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
- Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
- Schindler T., Schmid F. X. Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry. 1996 Dec 24;35(51):16833–16842. doi: 10.1021/bi962090j. [DOI] [PubMed] [Google Scholar]
- Shastry M. C., Luck S. D., Roder H. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys J. 1998 May;74(5):2714–2721. doi: 10.1016/S0006-3495(98)77977-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shastry M. C., Roder H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat Struct Biol. 1998 May;5(5):385–392. doi: 10.1038/nsb0598-385. [DOI] [PubMed] [Google Scholar]
- Takahashi S., Yeh S. R., Das T. K., Chan C. K., Gottfried D. S., Rousseau D. L. Folding of cytochrome c initiated by submillisecond mixing. Nat Struct Biol. 1997 Jan;4(1):44–50. doi: 10.1038/nsb0197-44. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. An acid induced conformational transition of denatured cytochrome c in urea and guanidine hydrochloride solutions. Biochemistry. 1975 Apr 8;14(7):1542–1547. doi: 10.1021/bi00678a031. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Conformational relaxations of urea- and guanidine hydrochloride-unfolded ferricytochrome c. J Biol Chem. 1977 Dec 25;252(24):8778–8780. [PubMed] [Google Scholar]
- Tsong T. Y. Ferricytochrome c chain folding measured by the energy transfer of tryptophan 59 to the heme group. Biochemistry. 1976 Dec 14;15(25):5467–5473. doi: 10.1021/bi00670a007. [DOI] [PubMed] [Google Scholar]
- Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
- Yeh S. R., Rousseau D. L. Folding intermediates in cytochrome c. Nat Struct Biol. 1998 Mar;5(3):222–228. doi: 10.1038/nsb0398-222. [DOI] [PubMed] [Google Scholar]
- Yeh S. R., Rousseau D. L. Ligand exchange during unfolding of cytochrome c. J Biol Chem. 1999 Jun 18;274(25):17853–17859. doi: 10.1074/jbc.274.25.17853. [DOI] [PubMed] [Google Scholar]
- Yeh S. R., Takahashi S., Fan B., Rousseau D. L. Ligand exchange during cytochrome c folding. Nat Struct Biol. 1997 Jan;4(1):51–56. doi: 10.1038/nsb0197-51. [DOI] [PubMed] [Google Scholar]