Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1246–1253. doi: 10.1110/ps.9.6.1246

Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process.

M Orzáez 1, E Pérez-Payá 1, I Mingarro 1
PMCID: PMC2144652  PMID: 10892817

Abstract

The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization.

Full Text

The Full Text of this article is available as a PDF (321.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Engelman D. M., Brünger A. T. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins. 1996 Nov;26(3):257–261. doi: 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  2. Asundi V. K., Carey D. J. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem. 1995 Nov 3;270(44):26404–26410. doi: 10.1074/jbc.270.44.26404. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L. Alpha-helix formation by peptides of defined sequence. Biophys Chem. 1995 Jun-Jul;55(1-2):127–135. doi: 10.1016/0301-4622(94)00146-b. [DOI] [PubMed] [Google Scholar]
  4. Blondelle S. E., Forood B., Houghten R. A., Pérez-Payá E. Secondary structure induction in aqueous vs membrane-like environments. Biopolymers. 1997 Oct 5;42(4):489–498. doi: 10.1002/(SICI)1097-0282(19971005)42:4<489::AID-BIP11>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  5. Bormann B. J., Knowles W. J., Marchesi V. T. Synthetic peptides mimic the assembly of transmembrane glycoproteins. J Biol Chem. 1989 Mar 5;264(7):4033–4037. [PubMed] [Google Scholar]
  6. Brosig B., Langosch D. The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci. 1998 Apr;7(4):1052–1056. doi: 10.1002/pro.5560070423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakrabartty A., Kortemme T., Padmanabhan S., Baldwin R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 1993 Jun 1;32(21):5560–5565. doi: 10.1021/bi00072a010. [DOI] [PubMed] [Google Scholar]
  8. Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  9. Fisher L. E., Engelman D. M., Sturgis J. N. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol. 1999 Oct 29;293(3):639–651. doi: 10.1006/jmbi.1999.3126. [DOI] [PubMed] [Google Scholar]
  10. HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
  11. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuroiwa T., Sakaguchi M., Mihara K., Omura T. Systematic analysis of stop-transfer sequence for microsomal membrane. J Biol Chem. 1991 May 15;266(14):9251–9255. [PubMed] [Google Scholar]
  14. Langosch D., Brosig B., Kolmar H., Fritz H. J. Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol. 1996 Nov 8;263(4):525–530. doi: 10.1006/jmbi.1996.0595. [DOI] [PubMed] [Google Scholar]
  15. Leeds J. A., Beckwith J. Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol. 1998 Jul 31;280(5):799–810. doi: 10.1006/jmbi.1998.1893. [DOI] [PubMed] [Google Scholar]
  16. Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys. 1994 May;27(2):157–218. doi: 10.1017/s0033583500004522. [DOI] [PubMed] [Google Scholar]
  17. Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
  18. Lemmon M. A., Flanagan J. M., Treutlein H. R., Zhang J., Engelman D. M. Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry. 1992 Dec 29;31(51):12719–12725. doi: 10.1021/bi00166a002. [DOI] [PubMed] [Google Scholar]
  19. Lemmon M. A., Treutlein H. R., Adams P. D., Brünger A. T., Engelman D. M. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol. 1994 Mar;1(3):157–163. doi: 10.1038/nsb0394-157. [DOI] [PubMed] [Google Scholar]
  20. Li S. C., Deber C. M. A measure of helical propensity for amino acids in membrane environments. Nat Struct Biol. 1994 Jun;1(6):368–373. doi: 10.1038/nsb0694-368. [DOI] [PubMed] [Google Scholar]
  21. MacKenzie K. R., Engelman D. M. Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3583–3590. doi: 10.1073/pnas.95.7.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  23. Miller V. L., Taylor R. K., Mekalanos J. J. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell. 1987 Jan 30;48(2):271–279. doi: 10.1016/0092-8674(87)90430-2. [DOI] [PubMed] [Google Scholar]
  24. Mingarro I., Elofsson A., von Heijne G. Helix-helix packing in a membrane-like environment. J Mol Biol. 1997 Oct 3;272(4):633–641. doi: 10.1006/jmbi.1997.1276. [DOI] [PubMed] [Google Scholar]
  25. Mingarro I., Whitley P., Lemmon M. A., von Heijne G. Ala-insertion scanning mutagenesis of the glycophorin A transmembrane helix: a rapid way to map helix-helix interactions in integral membrane proteins. Protein Sci. 1996 Jul;5(7):1339–1341. doi: 10.1002/pro.5560050712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pappu R. V., Marshall G. R., Ponder J. W. A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat Struct Biol. 1999 Jan;6(1):50–55. doi: 10.1038/4922. [DOI] [PubMed] [Google Scholar]
  27. Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
  28. Ren J., Lew S., Wang J., London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry. 1999 May 4;38(18):5905–5912. doi: 10.1021/bi982942a. [DOI] [PubMed] [Google Scholar]
  29. Rohl C. A., Baldwin R. L. Deciphering rules of helix stability in peptides. Methods Enzymol. 1998;295:1–26. doi: 10.1016/s0076-6879(98)95032-7. [DOI] [PubMed] [Google Scholar]
  30. Russ W. P., Engelman D. M. TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):863–868. doi: 10.1073/pnas.96.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sato M., Mueckler M. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J Biol Chem. 1999 Aug 27;274(35):24721–24725. doi: 10.1074/jbc.274.35.24721. [DOI] [PubMed] [Google Scholar]
  32. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  34. von Heijne G. Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct. 1994;23:167–192. doi: 10.1146/annurev.bb.23.060194.001123. [DOI] [PubMed] [Google Scholar]
  35. von Heijne G. Principles of membrane protein assembly and structure. Prog Biophys Mol Biol. 1996;66(2):113–139. doi: 10.1016/s0079-6107(97)85627-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES