Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1226–1234. doi: 10.1110/ps.9.6.1226

Dual coenzyme specificity of Archaeoglobus fulgidus HMG-CoA reductase.

D Y Kim 1, C V Stauffacher 1, V W Rodwell 1
PMCID: PMC2144654  PMID: 10892815

Abstract

Comparison of the inferred amino acid sequence of orf AF1736 of Archaeoglobus fulgidus to that of Pseudomonas mevalonii HMG-CoA reductase suggested that AF1736 might encode a Class II HMG-CoA reductase. Following polymerase chain reaction-based cloning of AF1736 from A. fulgidus genomic DNA and expression in Escherichia coli, the encoded enzyme was purified to apparent homogeneity and its enzymic properties were determined. Activity was optimal at 85 degrees C, deltaHa was 54 kJ/mol, and the statin drug mevinolin inhibited competitively with HMG-CoA (Ki 180 microM). Protonated forms of His390 and Lys277, the apparent cognates of the active site histidine and lysine of the P. mevalonii enzyme, appear essential for activity. The mechanism proposed for catalysis of P. mevalonii HMG-CoA reductase thus appears valid for A. fulgidus HMG-CoA reductase. Unlike any other HMG-CoA reductase, the A. fulgidus enzyme exhibits dual coenzyme specificity. pH-activity profiles for all four reactions revealed that optimal activity using NADP(H) occurred at a pH from 1 to 3 units more acidic than that observed using NAD(H). Kinetic parameters were therefore determined for all substrates for all four catalyzed reactions using either NAD(H) or NADP(H). NADPH and NADH compete for occupancy of a common site. k(cat)[NAD(H)]/k(cat)[NADP(H)] varied from unity to under 70 for the four reactions, indicative of slight preference for NAD(H). The results indicate the importance of the protonated status of active site residues His390 and Lys277, shown by altered K(M) and k(cat) values, and indicate that NAD(H) and NADP(H) have comparable affinity for the same site.

Full Text

The Full Text of this article is available as a PDF (546.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. M., Anderson C. D. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Arch Biochem Biophys. 1995 Aug 1;321(1):94–100. doi: 10.1006/abbi.1995.1372. [DOI] [PubMed] [Google Scholar]
  2. Andrews B., Adari H., Hannig G., Lahue E., Gosselin M., Martin S., Ahmed A., Ford P. J., Hayman E. G., Makrides S. C. A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor V beta 5.3 in Escherichia coli. Gene. 1996 Dec 5;182(1-2):101–109. doi: 10.1016/s0378-1119(96)00523-9. [DOI] [PubMed] [Google Scholar]
  3. Ben-Bassat A., Goldberg I. Purification and properties of glucose-6-phosphate dehydrogenase (NADP+/NAD+) and 6-phosphogluconate dehydrogenase (NADP+/NAD+) from methanol-grown Pseudomonas C. Biochim Biophys Acta. 1980 Jan 11;611(1):1–10. doi: 10.1016/0005-2744(80)90036-4. [DOI] [PubMed] [Google Scholar]
  4. Bischoff K. M., Rodwell V. W. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli. J Bacteriol. 1996 Jan;178(1):19–23. doi: 10.1128/jb.178.1.19-23.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bochar D. A., Stauffacher C. V., Rodwell V. W. Sequence comparisons reveal two classes of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mol Genet Metab. 1999 Feb;66(2):122–127. doi: 10.1006/mgme.1998.2786. [DOI] [PubMed] [Google Scholar]
  6. Bochar D. A., Tabernero L., Stauffacher C. V., Rodwell V. W. Aminoethylcysteine can replace the function of the essential active site lysine of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochemistry. 1999 Jul 13;38(28):8879–8883. doi: 10.1021/bi9902687. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Consalvi V., Chiaraluce R., Politi L., Gambacorta A., De Rosa M., Scandurra R. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1991 Mar 14;196(2):459–467. doi: 10.1111/j.1432-1033.1991.tb15837.x. [DOI] [PubMed] [Google Scholar]
  9. Consalvi V., Chiaraluce R., Politi L., Vaccaro R., De Rosa M., Scandurra R. Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem. 1991 Dec 18;202(3):1189–1196. doi: 10.1111/j.1432-1033.1991.tb16489.x. [DOI] [PubMed] [Google Scholar]
  10. Darnay B. G., Rodwell V. W. His865 is the catalytically important histidyl residue of Syrian hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1993 Apr 25;268(12):8429–8435. [PubMed] [Google Scholar]
  11. Darnay B. G., Wang Y., Rodwell V. W. Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1992 Jul 25;267(21):15064–15070. [PubMed] [Google Scholar]
  12. De Rosa M., Gambacorta A., Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev. 1986 Mar;50(1):70–80. doi: 10.1128/mr.50.1.70-80.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doolittle W. F., Logsdon J. M., Jr Archaeal genomics: do archaea have a mixed heritage? Curr Biol. 1998 Mar 12;8(6):R209–R211. doi: 10.1016/s0960-9822(98)70127-7. [DOI] [PubMed] [Google Scholar]
  14. Friesen J. A., Lawrence C. M., Stauffacher C. V., Rodwell V. W. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Biochemistry. 1996 Sep 17;35(37):11945–11950. doi: 10.1021/bi9609937. [DOI] [PubMed] [Google Scholar]
  15. Frimpong K., Rodwell V. W. Catalysis by Syrian hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proposed roles of histidine 865, glutamate 558, and aspartate 766. J Biol Chem. 1994 Apr 15;269(15):11478–11483. [PubMed] [Google Scholar]
  16. Gill J. F., Jr, Beach M. J., Rodwell V. W. Mevalonate utilization in Pseudomonas sp. M. Purification and characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1985 Aug 5;260(16):9393–9398. [PubMed] [Google Scholar]
  17. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  18. Lawrence C. M., Rodwell V. W., Stauffacher C. V. Crystal structure of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstrom resolution. Science. 1995 Jun 23;268(5218):1758–1762. doi: 10.1126/science.7792601. [DOI] [PubMed] [Google Scholar]
  19. Leyland M. L., Kelly D. J. Purification and characterization of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur J Biochem. 1991 Nov 15;202(1):85–93. doi: 10.1111/j.1432-1033.1991.tb16347.x. [DOI] [PubMed] [Google Scholar]
  20. Maines M. D., Polevoda B. V., Huang T. J., McCoubrey W. K., Jr Human biliverdin IXalpha reductase is a zinc-metalloprotein. Characterization of purified and Escherichia coli expressed enzymes. Eur J Biochem. 1996 Jan 15;235(1-2):372–381. doi: 10.1111/j.1432-1033.1996.00372.x. [DOI] [PubMed] [Google Scholar]
  21. Maulik P., Ghosh S. NADPH/NADH-dependent cold-labile glutamate dehydrogenase in Azospirillum brasilense. Purification and properties. Eur J Biochem. 1986 Mar 17;155(3):595–602. doi: 10.1111/j.1432-1033.1986.tb09530.x. [DOI] [PubMed] [Google Scholar]
  22. Neuhauser W., Haltrich D., Kulbe K. D., Nidetzky B. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem J. 1997 Sep 15;326(Pt 3):683–692. doi: 10.1042/bj3260683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steen I. H., Lien T., Birkeland N. K. Biochemical and phylogenetic characterization of isocitrate dehydrogenase from a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch Microbiol. 1997 Nov;168(5):412–420. doi: 10.1007/s002030050516. [DOI] [PubMed] [Google Scholar]
  24. Tabernero L., Bochar D. A., Rodwell V. W., Stauffacher C. V. Substrate-induced closure of the flap domain in the ternary complex structures provides insights into the mechanism of catalysis by 3-hydroxy-3-methylglutaryl-CoA reductase. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7167–7171. doi: 10.1073/pnas.96.13.7167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsai C. S., Al-Kassim L. S., Mitton K. P., Thompson L. E., Van Es C., White J. H. Purification and comparative studies of alcohol dehydrogenases. Comp Biochem Physiol B. 1987;87(1):79–85. doi: 10.1016/0305-0491(87)90473-1. [DOI] [PubMed] [Google Scholar]
  26. Wang Y., Darnay B. G., Rodwell V. W. Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1990 Dec 15;265(35):21634–21641. [PubMed] [Google Scholar]
  27. al-Kassim L. S., Tsai C. S. Purification and kinetic characterization of pickerel liver alcohol dehydrogenase with dual coenzyme specificity. Biochem Cell Biol. 1993 Sep-Oct;71(9-10):421–426. doi: 10.1139/o93-062. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES