Abstract
Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.
Full Text
The Full Text of this article is available as a PDF (670.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
- Baldwin R. L. How Hofmeister ion interactions affect protein stability. Biophys J. 1996 Oct;71(4):2056–2063. doi: 10.1016/S0006-3495(96)79404-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barford D., Hu S. H., Johnson L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol. 1991 Mar 5;218(1):233–260. doi: 10.1016/0022-2836(91)90887-c. [DOI] [PubMed] [Google Scholar]
- Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
- Bartl F., Palm D., Schinzel R., Zundel G. Proton relay system in the active site of maltodextrinphosphorylase via hydrogen bonds with large proton polarizability: an FT-IR difference spectroscopy study. Eur Biophys J. 1999;28(3):200–207. doi: 10.1007/s002490050200. [DOI] [PubMed] [Google Scholar]
- Bañuelos S., Arrondo J. L., Goñi F. M., Pifat G. Surface-core relationships in human low density lipoprotein as studied by infrared spectroscopy. J Biol Chem. 1995 Apr 21;270(16):9192–9196. doi: 10.1074/jbc.270.16.9192. [DOI] [PubMed] [Google Scholar]
- Becker S., Palm D., Schinzel R. Dissecting differential binding in the forward and reverse reaction of Escherichia coli maltodextrin phosphorylase using 2-deoxyglucosyl substrates. J Biol Chem. 1994 Jan 28;269(4):2485–2490. [PubMed] [Google Scholar]
- Bonneté F., Madern D., Zaccaï G. Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions. J Mol Biol. 1994 Dec 9;244(4):436–447. doi: 10.1006/jmbi.1994.1741. [DOI] [PubMed] [Google Scholar]
- Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
- Cashikar A. G., Rao N. M. Unfolding pathway in red kidney bean acid phosphatase is dependent on ligand binding. J Biol Chem. 1996 Mar 1;271(9):4741–4746. doi: 10.1074/jbc.271.9.4741. [DOI] [PubMed] [Google Scholar]
- Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
- Copley R. R., Barton G. J. A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites. J Mol Biol. 1994 Sep 30;242(4):321–329. doi: 10.1006/jmbi.1994.1583. [DOI] [PubMed] [Google Scholar]
- Cortijo M., Steinberg I. Z., Shaltiel S. Fluorescence of glycogen phosphorylase b. Structural transitions and energy transfer. J Biol Chem. 1971 Feb 25;246(4):933–938. [PubMed] [Google Scholar]
- D'auria S., Barone R., Rossi M., Nucci R., Barone G., Fessas D., Bertoli E., Tanfani F. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. Biochem J. 1997 May 1;323(Pt 3):833–840. doi: 10.1042/bj3230833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eis C., Nidetzky B. Characterization of trehalose phosphorylase from Schizophyllum commune. Biochem J. 1999 Jul 15;341(Pt 2):385–393. [PMC free article] [PubMed] [Google Scholar]
- Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
- Fernandez-Ballester G., Castresana J., Arrondo J. L., Ferragut J. A., Gonzalez-Ros J. M. Protein stability and interaction of the nicotinic acetylcholine receptor with cholinergic ligands studied by Fourier-transform infrared spectroscopy. Biochem J. 1992 Dec 1;288(Pt 2):421–426. doi: 10.1042/bj2880421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold A. M., Johnson R. M., Tseng J. K. Kinetic mechanism of rabbit muscle glycogen phosphorylase a. J Biol Chem. 1970 May 25;245(10):2564–2572. [PubMed] [Google Scholar]
- Goldsmith E. J., Sprang S. R., Hamlin R., Xuong N. H., Fletterick R. J. Domain separation in the activation of glycogen phosphorylase a. Science. 1989 Aug 4;245(4917):528–532. doi: 10.1126/science.2756432. [DOI] [PubMed] [Google Scholar]
- Griessler R., D'auria S., Schinzel R., Tanfani F., Nidetzky B. Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli. Biochem J. 2000 Mar 1;346(Pt 2):255–263. [PMC free article] [PubMed] [Google Scholar]
- Honikel K. O., Madsen N. B. Fluorescence quenching, a tool for probing conformational changes in glycogen phosphorylase. Can J Biochem. 1973 Apr;51(4):344–356. doi: 10.1139/o73-041. [DOI] [PubMed] [Google Scholar]
- Iriarte A., Kraft K., Martinez-Carrion M. The separate effects of coenzyme components may not be additive. Roles of pyridoxal and inorganic phosphate in aspartate aminotransferase apoenzymes. J Biol Chem. 1985 Jun 25;260(12):7457–7463. [PubMed] [Google Scholar]
- Jackson M., Mantsch H. H. Beware of proteins in DMSO. Biochim Biophys Acta. 1991 Jun 24;1078(2):231–235. doi: 10.1016/0167-4838(91)90563-f. [DOI] [PubMed] [Google Scholar]
- Jackson M., Mantsch H. H. Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochim Biophys Acta. 1992 Jan 9;1118(2):139–143. doi: 10.1016/0167-4838(92)90141-y. [DOI] [PubMed] [Google Scholar]
- Johnson L. N., Acharya K. R., Jordan M. D., McLaughlin P. J. Refined crystal structure of the phosphorylase-heptulose 2-phosphate-oligosaccharide-AMP complex. J Mol Biol. 1990 Feb 5;211(3):645–661. doi: 10.1016/0022-2836(90)90271-M. [DOI] [PubMed] [Google Scholar]
- Johnson L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992 Mar;6(6):2274–2282. doi: 10.1096/fasebj.6.6.1544539. [DOI] [PubMed] [Google Scholar]
- Johnson L. N., Snape P., Martin J. L., Acharya K. R., Barford D., Oikonomakos N. G. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b. J Mol Biol. 1993 Jul 5;232(1):253–267. doi: 10.1006/jmbi.1993.1380. [DOI] [PubMed] [Google Scholar]
- Lin K., Rath V. L., Dai S. C., Fletterick R. J., Hwang P. K. A protein phosphorylation switch at the conserved allosteric site in GP. Science. 1996 Sep 13;273(5281):1539–1542. doi: 10.1126/science.273.5281.1539. [DOI] [PubMed] [Google Scholar]
- Lippe G., Tanfani F., Di Pancrazio F., Contessi S., Bertoli E., Dabbeni-Sala F. Effect of inhibitor binding to beta subunits of F1ATPase on enzyme thermostability: a kinetic and FT-IR spectroscopic analysis. FEBS Lett. 1998 Aug 7;432(3):128–132. doi: 10.1016/s0014-5793(98)00816-3. [DOI] [PubMed] [Google Scholar]
- Martinez-Liarte J. H., Iriarte A., Martinez-Carrion M. Inorganic phosphate binding and electrostatic effects in the active center of aspartate aminotransferase apoenzyme. Biochemistry. 1992 Mar 17;31(10):2712–2719. doi: 10.1021/bi00125a011. [DOI] [PubMed] [Google Scholar]
- Meiering E. M., Bycroft M., Fersht A. R. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. Biochemistry. 1991 Nov 26;30(47):11348–11356. doi: 10.1021/bi00111a022. [DOI] [PubMed] [Google Scholar]
- Muga A., Arrondo J. L., Bellon T., Sancho J., Bernabeu C. Structural and functional studies on the interaction of sodium dodecyl sulfate with beta-galactosidase. Arch Biochem Biophys. 1993 Jan;300(1):451–457. doi: 10.1006/abbi.1993.1061. [DOI] [PubMed] [Google Scholar]
- Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
- O'Reilly M., Watson K. A., Johnson L. N. The crystal structure of the Escherichia coli maltodextrin phosphorylase-acarbose complex. Biochemistry. 1999 Apr 27;38(17):5337–5345. doi: 10.1021/bi9828573. [DOI] [PubMed] [Google Scholar]
- O'Reilly M., Watson K. A., Schinzel R., Palm D., Johnson L. N. Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nat Struct Biol. 1997 May;4(5):405–412. doi: 10.1038/nsb0597-405. [DOI] [PubMed] [Google Scholar]
- Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
- Rath V. L., Lin K., Hwang P. K., Fletterick R. J. The evolution of an allosteric site in phosphorylase. Structure. 1996 Apr 15;4(4):463–473. doi: 10.1016/s0969-2126(96)00051-2. [DOI] [PubMed] [Google Scholar]
- Schinzel R., Drueckes P. The phosphate recognition site of Escherichia coli maltodextrin phosphorylase. FEBS Lett. 1991 Jul 29;286(1-2):125–128. doi: 10.1016/0014-5793(91)80956-4. [DOI] [PubMed] [Google Scholar]
- Shaltiel S., Hedrick J. L., Pocker A., Fischer E. H. Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs. Biochemistry. 1969 Dec;8(12):5189–5196. doi: 10.1021/bi00840a073. [DOI] [PubMed] [Google Scholar]
- Shimomura S., Emman K., Fukui T. The role of pyridoxal 5'-phosphate in plant phosphorylase. J Biochem. 1980 Apr;87(4):1043–1052. [PubMed] [Google Scholar]
- Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
- Sprang S. R., Madsen N. B., Withers S. G. Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5'-pyrophosphate coenzyme-substrate analog. Protein Sci. 1992 Sep;1(9):1100–1111. doi: 10.1002/pro.5560010904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprang S. R., Withers S. G., Goldsmith E. J., Fletterick R. J., Madsen N. B. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 1991 Nov 29;254(5036):1367–1371. doi: 10.1126/science.1962195. [DOI] [PubMed] [Google Scholar]
- Stirtan W. G., Withers S. G. Phosphonate and alpha-fluorophosphonate analogue probes of the ionization state of pyridoxal 5'-phosphate (PLP) in glycogen phosphorylase. Biochemistry. 1996 Nov 26;35(47):15057–15064. doi: 10.1021/bi9606004. [DOI] [PubMed] [Google Scholar]
- WADA H., SNELL E. E. The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. J Biol Chem. 1961 Jul;236:2089–2095. [PubMed] [Google Scholar]
- Watson K. A., McCleverty C., Geremia S., Cottaz S., Driguez H., Johnson L. N. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J. 1999 Sep 1;18(17):4619–4632. doi: 10.1093/emboj/18.17.4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson K. A., Schinzel R., Palm D., Johnson L. N. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J. 1997 Jan 2;16(1):1–14. doi: 10.1093/emboj/16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinhäusel A., Griessler R., Krebs A., Zipper P., Haltrich D., Kulbe K. D., Nidetzky B. alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. Biochem J. 1997 Sep 15;326(Pt 3):773–783. doi: 10.1042/bj3260773. [DOI] [PMC free article] [PubMed] [Google Scholar]
